
CS 1: Intro to CS
Intro to Java

Week 8 (Combined Slide Deck)

Image Source:
https://www.reddit.com/r/ProgrammerHumor

https://www.reddit.com/r/ProgrammerHumor/comments/eow7p1/phython_vs_java/

Administrivia
MP 7 is out ("porting Python to Java" with a DNA/mRNA application!)

2

Intro to Java (Lectures 21-23, Lab 07)
Python vs. Java (Monday)

Compiling vs. Running (Monday)

Types (Introduced Monday)

Syntax (Introduced Monday)

Conditionals and Loops (Wednesday, Friday)

Methods (Tuesday, Wednesday)

Java Programs vs. Java Classes (Monday-Wednesday)

3

For fun: What if Programming Languages were
Pokemon?

https://www.codementor.io/learn-programming/what-if-pokemon-programming-languages
https://www.codementor.io/learn-programming/what-if-pokemon-programming-languages

Tips for Week 8
In MP7A, you will first get practice with basic Java

In MP7 Parts B and C, you will practice porting a provided DNA.py class into DNA.java,
and also finishing an mRNA.java and DNAClient.java to finish a fully-function DNA ->
mRNA -> codon -> protein transcription feature!

To study, we encourage you to review the posted lecture slides/code (the code has
comments to review!), utilizing OH, and starting MP7 early so you can come to OH with
any questions

4

What is Java?
Java is the second programming language students see in the Caltech CS curriculum

Everything weʼve done in Python so far can be done in Java, but the syntax and rules are
quite a bit different

Java is a typed, compiled language (kind of like having a language translator/censor
with you 24/7 yelling at you when you speak incorrectly, but once you pass the censor,
youʼre pretty good to go out speaking in public)

Python is an interpreted language (no language translator before you speak, but after
you speak incorrectly, Pythonists may yell at you, definitely judge you. Especially if use
use Python 2)

5

What is Java, Really? A Comparison.

6

Python Java

Typing Dynamically typed (type-checking at runtime) Statically typed, compiled (with
type-checking) then ran

Language Type Interpreted Compiled and interpreted

Syntax Less syntax, “more syntactic sugar” More verbose (and stricter)
syntax

Statements var_name = <exp> VarType varName = <exp>;

Performance Compiled at run-time (slower) Compiled, then executable until
re-compiled (faster)

Example: Hello World!

7

Example: Hello World!

8

These two programs are written in Python, Java respectively. What similarities and
differences do you notice?

Java: Compiled and Interpreted
The most important thing to understand when starting Java is that unlike Python, we
need to compile a Java program.

The compiling step will do syntax and type-checking and if everything checks out, a
.class file will be created (or updated) with the compiled byte code

Then we can run!

9

But REPLs are Fun...
Recall from Reading 2 that a REPL (Read-Eval-Print-Loop) is a very convention interpreter
(e.g. the Python shell) that evaluates statements at run-time.

This isnʼt used in practice for Java, where performance/correctness is achieved through the
compilation step, but there are online REPLs (and jshell) which can be useful to quickly
practice Java before getting the setup figured out. You can play around with this popular
one called replit. Do not rely on this for MPs, and turn off any AI auto-complete features
if you do so (AI tools are not allowed in CS 1).

10

https://replit.com/languages/java10

Variables and Assignment
Variables are still assigned as <var name> = <expression>

But Java requires variables to be declared with a valid type and all statements must end
with a ; (semicolon)

>>> salary = 18.5

>>> weekly_salary = salary * 20

>>> print(weekly_salary)

370

double salary = 18.5;

double weeklySalary = salary * 20;

System.out.println(weeklySalary);

// 370

Python Java

Types (Back to Lecture 1)
Data in programming languages is subdivided into different "types":

● integers:
○ Python (int type): x = 0, x = -43, x = 1001
○ Java (int type): int x = 0; int x = -43; int x = 1001;

● floating-point numbers:
○ Python (8-byte float type): x = 3.1415, x = 2.718
○ Java (8-byte double type and 4-byte float type))

■ double x = 3.1415; double x = 2.718; (used in Lab 7)
■ float x = 3.14515f; float = 2.718f;

● boolean values:
○ Python (bool type): x = True x = False
○ Java (boolean type): boolean x = true; boolean x = false;

More Types: Strings vs. char
Strings and characters are separate types in Java (as opposed to Python having only str)

● Strings
○ Python (str type): s ='foobar', s = 'hello, world!'
○ Java (String type): String s ="foobar"; String s = "hello, world!";

■ Must be defined with "

● Characters:
○ Python (single-character str): s ='f', s = '!'
○ Java (char type): char ch = 'f'; char ch = '!';

■ Must be defined with '

Any many others! We wonʼt go beyond these types (e.g. lists, dictionaries, etc.) in Java
though... You can find a summary of other Java types here.

https://www.w3schools.com/java/java_data_types.asp

Lecture 1: Types
In Python, the same variable can hold data of different types at different times:

>>> a = 'foobar'

>>> a

'foobar'

>>> a = 3.1415926

>>> a

3.1415926

What might be an issue with this?

Java: Variables are Declared with Types

>>> a = 'foobar'

>>> a

'foobar'

>>> a = 3.1415926

>>> a

3.1415926

String a = "foobar";

// "foobar"

a = 3.1415926;

// compiler error

Lec22MoreJava.java:lineNum: error:

incompatible types: double cannot be

converted to String

 a = 3.1415926;

 ^

In Java, the same variable cannot hold data of different types after declaration.

Java: Variables are Declared with Types

>>> a = 'foobar'

>>> a

'foobar'

>>> a = 'foo'

>>> a

'foo'

String a = "foobar";

// "foobar"

String a = "foo";

// compiler error

Lec22MoreJava.java:lineNum: error: variable

a is already defined in method

main(String[])

 String a = "foo";

 ^

Also, we cannot re-declare a type for an existing variable:

Printing: System.out.println(<exp>);
Since we donʼt have a Java interpreter to dynamically evaluate and output values in the
interpreter (well, there is jshell), we will be using System.out.prinltn(<exp>);
to output values.

17

Continued Wednesday
More Java syntax (Lec22MoreJava.java)

Methods in Java (Lec22JavaMethodExample.java)

Classes vs. Client Programs in Python vs. Java
● Dog.java vs. Dog.py
● DogClient.java vs. dog_client.py

18

VSCode Extension Pack for Java
The Extension Pack for Java in VSCode offers a variety of very useful features to help you
when programming in Java (a linter to catch style/syntax errors, a debugger, etc.)

We highly recommend it!

19

Tips for MP7
You should not be using any data structures, such as Lists, arrays, or Maps (ask El if
you're unsure how to implement something without them!)

Do not use recursion (it would be poor practice for any exercise in MP7)

Make sure to utilize the VSCode debugger (Java)!

20

Review
Recall the three steps to write and run a Python program (e.g. program.py)

1. Write the .py program in VSCode
2. Save
3. Run with $ python3 program.py

What are the 4 steps we learned in Lecture 23 to write and run a Java program (e.g.
Program.java)?

21

1. Write the .java program in VSCode
2. Save
3. Compile with $ javac Program.java
4. Run with $ java Program

More Syntax: VSCode Demo
● Types and variables
● Strings vs. chars
● Functions
● Loops
● if/else

22

More about String vs. char
One of the most common bugs students run into when porting Python to Java relates to
the distinction Java makes between a String and char

The following slide was demo'd in class to discuss some of the differences

Hint on MP7 DNA.java: make sure you are not converting back and forth between a
String and character; it's ok to use char ch = s.charAt(i), but don't use
(String) ch after)

23

Example

24

lec22_python_fns.py Lec22.java

Concatenation with +
Python:

25

Java:

:

We still use +/+= to concatenate Strings in Java, and can concatenate a char to a String

However, we cannot update a declared char variable to concatenate a String to it (it would no
longer be a char!)

Letter-case Methods in Java vs. Python
Python:

26

Java:

Here, we see another example of the distinction Java enforces between String and char

Remember that char is primitive, so we use the Character wrapper class to access convenient
methods like Character.toUpperCase(char) -> boolean

Strings: Indexing and Characters
Python:

27

Java:

Strings: Slicing vs. Substrings
Python:

28

Java:

Conditionals and Booleans in Java
In Java, we use || and && instead of Python's or and and, respectively

29

if/elif/else vs. if/else if /else
In Python:
if cond1:
 ...
elif cond2:
 ...
else:
 ...

30

In Java:
if (cond1) {
 ...
} else if (cond2) {
 ...
} else {
 ...
}

if/elif/else vs. if/else if /else
In Python:

def aqi_demo():
 aqi_str = '151'
 aqi = int(aqi_str)
 if aqi == 150:
 print("The AQI today is 150. Take caution!")
 elif aqi < 150:
 print("It's healthy to go out outside!")
 else:
 print("It's unhealthy to go outside!")

31

In Java:

public static void aqiDemo() {
 String aqiStr = "151";
 int aqi = Integer.parseInt(aqiStr);
 if (aqi == 150) {
 System.out.println("The AQI today is 150. " +

 "Take caution!");
 } else if (aqi < 150) {
 System.out.println("It's healthy to go out outside!");
 } else {
 System.out.println("It's unhealthy to go outside!");
 }
}

Conditionals and Booleans in Java
Another example with characters (hint: MP7!)

32

Conditionals and Booleans in Java
Combining a for loop, helper method, and if statement in Java (javadoc omitted):

33

Common Bugs: Indentation vs. { }
Python is sensitive to indentation; every for/if/function block ending with : has a
body defined by all statements indented within the block, which ends as soon as a
statement is de-indented

Java is not sensitive to indentation; blocks are always defined within { } braces, but
you should still use indentation within blocks to keep things readable and avoid subtle
bugs!

34

Common Bugs: Indentation vs. { }
An example; the return occurs after the first
iteration, but Java requires a guaranteed
String return (if the loop doesn't enter
due to a String of length <= 1, nothing is
returned, which is a compiler error)

With the VSCode Java extension, you can
hover over the red lines before compiling to
see if it notices the error in advance

35

Common Bugs: Indentation vs. { }

Because Java executes blocks based on { and } contents, this will compile, but you
should not do this! You are expected to use the same indentation conventions we've
been using 1.) to avoid subtle bugs and 2.) this is very difficult to read, whether you're
debugging or others are working on code with you. Consistent indentation will continue
to be expected in MP7!

36

Back to Functions (Python Week 1)
A function is like a machine to perform tasks and possibly return some result

Every function has:

● Behavior (body)
● Parameters (optional)
● Return value (optional)

Function Behavior

Input
(parameters)

Output
 (return value)

min(x, y)
x

42

y

42

48

Example with built-in min function:

37

Defining and Calling Functions

Definition Syntax:
def name(<parameters>):

 <body>

return <value> # optional

Definition Examples:
def say_hello(name):

print('Hello ' + name + '!')

def f(x, y):

return x + 2 * y

Function Call Examples:
say_hello('world') # Hello world!

say_hello('Caltech') # Hello Caltech!

ans = f(2, 20) # ans == 42

Functions may have parameters passed to help generalize functionality and may also
specify a return value with the return keyword (None if no return specified)

38

Defining and Calling Functions Methods

Definition Syntax:
public static <retType> name(<parameters>):

 <body>

return <value>; // if not void

Note: If a method is defined within a non-executable
Class (one defined with a main method), then static
is omitted.

Definition Examples:
public static void sayHello(String name) {

System.out.println("Hello " + name + "!");

}

public static int f(int x, int y) {

return x + 2 * y;

}

Method Call Examples:
sayHello("world"); // Hello world!

sayHello("Caltech") // Hello Caltech!

int ans = f(2, 20); // ans == 42

Java methods may have typed parameters passed to help generalize functionality and
must also specify a return value with the return (unless declared a “void” method)

39

Docstrings vs. javadoc

40

Programs vs. Classes
In MP 6 (and 7) you implement both a client program and 2 classes.

Anything that is runnable (usually with if __name__ == '__main__') is a client
program/application in Python

We usually separate client programs from files defining classes for abstraction/good
program decomposition (we generally want our classes to be generalized enough to be
usable in different client applications)

Weʼll see this in Java too

This week's lecture code has an executable Java program defined with a main method
(HelloWorld.java and DogClient.java); Dog.java is not an executable class.

41

Python Class vs. Java Class
"""
Program docstring
"""
class ClassName:
 """ class docstring """

 def __init__(self, some_field):
 """ method docstring """
 self.some_field = some_field

42

/**
 * Class (file) javadoc
 */
public class ClassName {
 private int someField;

 /**
 * Constructor/method javadoc
 */
 public ClassName(int someField) {
 this.someField = someField;
 }
}

Anything in black is a keyword or language-specific token in Python/Java

Green represents the state (attribute/field)

Purple represents the specific class name syntax

Python Class vs. Java Class: Dog.py

43

Python Class vs. Java Class: Dog.java

44

Python Application vs. Java Application

45

(Basic) Error-Handling in Java
The equivalent of raise in Python is throws
in Java

To throw an exception when given invalid
arguments, we use:

throw new IllegalArgumentException(errMsg);

You will need to use this a few times in MP7!

46

Dog.java

(Basic) Error-Handling in Java
The equivalent of raise in Python is throws
in Java

To throw an exception when given invalid
arguments, we use:

throw new IllegalArgumentException(errMsg);

You will need to use this a few times in MP7!

47

Dog.java

Basic File IO in Python vs. Java
VSCode Demo (AQIs from Lecture 08)

48

Extra Material: Random in Java
To work with random numbers in Java, we use
the Random object (requiring import
java.util.Random at the top)

The two methods that are most commonly used
are r.nextInt(start, stop) and
r.nextDouble() (returns a random double
between 0.0 and 1.0)

49

