
CS 1: Intro to CS
Intro to Classes and Object-Oriented Programming

Q3 of today's Exit Ticket:
● What are some ideas

of classes/objects
you come up with
today?

Very great questions lately! We've really been impressed by the quality of student
questions and seeing growth in your debugging skills this week compared to Week 1

We hope you are enjoying Matplotlib! Don't forget to utilize the student Discord more!

Administrivia

2

MP 5 Part C
Take advantage of this creative component! Above-and-beyond applications are eligible
for Engagement Opportunity credit based on:

● Sharing on Discord with peers, including your data science question, motivation,
and 2-3 sentences reflecting on what you learned ("engagement with
peers/collaboration")

● Originality and application to your own interests ("engagement in applications of
CS 1")

● Any reflection component (reflection.txt) you'd like to add to your submission,
including room for improvement and possible extension

3

Agenda
Introduction to classes and object-oriented programming
● The class statement
● Creating our own objects
● Constructors
● Defining new methods

Wednesday:
● More OOP in Python
● Handling errors with Exceptions

○ Using raise to raise exceptions on invalid arguments
○ Using try/except to handle raised exceptions

You can find a helpful Pre-Check on Canvas to review OOP
4

https://caltech.instructure.com/courses/5984/quizzes/6685

Object
Since Week 1, we have been working with various objects:
● Strings
● Lists
● Dictionaries
● Tuples
● Files
● Figure and Axes in Matplotlib

All of these objects are built in to Python

5

What is an Object?
We have used the term “object” pretty informally so far

Concisely, itʼs something that:
● Has some kind of internal data (state)
● We can call methods on

As we discussed a while back, a method is like a function, but it calls on an object (with
possible other arguments) using the “dot syntax”

object.method(arg1, arg2, …)

6

Objects and Methods
Recall the append method on lists:

>>> lst = [1, 2, 3, 4, 5]

>>> lst.append(42)

Here, lst is the object (a list)

append is the name of the method

42 is the argument to the method

7

Examples We’ve Seen: Lists and Files
Which of the following lines use functions? Which of the following lines use methods?

8

Lists Files

1 lst = [1, 2, 3, 4, 5]
2 length = len(lst)
3 lst.reverse()
4 lst.sort()
5 two_index = lst.index(2)
6 lst_sum = sum(lst)

1 f = open('aqis.txt', 'r')
2 while True:
3 line = f.readline()
4 print(line)
5 if not line:
6 break
7 f.close()

Examples We’ve Seen: Lists and Files
Which of the following lines use functions? Which of the following lines use methods?

9

Lists Files

1 lst = [1, 2, 3, 4, 5]
2 length = len(lst)
3 lst.reverse()
4 lst.sort()
5 two_index = lst.index(2)
6 lst_sum = sum(lst)

1 f = open('aqis.txt', 'r')
2 while True:
3 line = f.readline()
4 print(line)
5 if not line:
6 break
7 f.close()

Methods vs. Functions
Why methods instead of functions?

If append wasnʼt a list method, we could turn it into a function:

>>> lst = [1, 2, 3, 4, 5]

>>> append(lst, 42)

Whatʼs are some issues with this?

10

Methods vs. Functions
>>> lst = [1, 2, 3, 4, 5]

>>> append(lst, 42)

Issues with the function approach:

11

1. If append was a function, it would have to change the list argument (usually we
donʼt want to do this in order to make functions easier to manage)

2. We might want to use append for different objects that append in different ways,
and would then have to use a different function name for each

3. Itʼs also generally more readable to see what the main object is being acted upon
(left of “.”), and any arguments the method is taking in

Methods vs. Functions
So how do we define methods?

Methods are inextricably tied to objects, so before learning how to define methods, we
need to talk about defining our own kinds of objects!

12

Motivating Objects
Often, we want to create certain kinds of objects to represent things with particular
kinds of data

We also want to define new methods for the object to interact with its internal data

What are some types of things you can think of that could represent objects with state
(data) and methods (functionality)?

● Dog(breed) -> different functionality
● CaltechStudent(name, id, year)
● Car(make, color, wheels, can_reverse)
● Food(contains_gluten, vegetarian)

13

Examples
Some student class ideas from last year's Pre-Check:
● Course

● LOLCharacter

● Pet

● Dog
● Plant

● Coffee

● FoodItem

● Laptop

● …

You can find a list of some proposed state and methods in oop_student_ideas.py
14

https://eipsum.github.io/cs1/lectures/lec17/oop_student_ideas.py

Recall: Implicit vs. Explicit Interfaces
Matplotlib's documentation refers to "implicit" and "explicit" interfaces; two approaches
to create plots using pyplot (Axes.plot vs. plt.plot):

Matplotlib's official documentation recommends "the explicit object-oriented API for
complex plots". Today, we'll learn more about what this means!

15

Explicit approach: "Explicitly create Figures
and Axes, and call methods on them (the
'object-oriented (OO) style')."

we use the ax object methods to plot
fig, ax = plt.subplots()
ax.plot(xs, ys, label='genres')
plt.show()

Implicit approach: "Rely on pyplot to
implicitly create/manage the Figures/Axes,
and use pyplot functions for plotting."

plt.plot(xs, ys, label='genres')
plt.show()

Getting Started with OOP
OOP is very useful whenever you are working with state for entities and need a way to
interact with each one. Graphics programs (with interactive widgets like windows,
buttons, plots, etc.) and games (entities with state to keep track of, including characters,
moves, buffs, levels, etc.) are some of the most common applications of OOP

For today, weʼll just start practicing writing our own objects and exploring the
“object-oriented” mindset

First, we need to define what a class is...

16

Classes Define Objects
Objects in Python are are all instances of some class

A class describes what an object is (like a blueprint), including the definition of all of the
methods objects of that class have

A class is also a data type

Instances of a class can contain internal data

Examples: lists have elements, a dictionary has key/value pairs, Axes have x and y axis
information, etc.

17

Defining a Class
class <name of class>:

 """<docstring>"""

 def __init__(self, arg1, ...):

 ...

 def <method1>(self, arg1, ...):

 ...

 def <method2>(self, arg1, ...):

 ...

PEP8 Note: Whereas PEP8 requires 2 lines between functions, class methods are separated
with 1 line 18

A Very Simple Example
class Box:

 """Instances of this class store a single value."""

 def __init__(self, value):

 self.value = value

 def get_value(self):

 return self.value

 def set_value(self, new_value):

 self.value = new_value

What do you observe about this code? What do you think self is used for? __init__?

What is the internal data? 19

class and def Keywords

20

class Box:

 """

 A Box instance represents a Box with a value inside.

 """

 def __init__(self, value):

 self.value = value

 def get_value(self):

 return self.value

 def set_value(self, new_value):

 self.value = new_value

The class statement defines the class followed by the class name and :

Just like functions, methods are defined with def, but there are a couple of differences...

self

21

class Box:

 """

 A Box instance represents a Box with a value inside.

 """

 def __init__(self, value):

 self.value = value

 def get_value(self):

 return self.value

 def set_value(self, new_value):

 self.value = new_value

The first argument to a Python method represents the object being acted upon

By convention, this is called self (though it doesnʼt have to be)

self

22

def __init__(self, value):

 self.value = value

def get_value(self):

return self.value

def set_value(self, new_value):

self.value = new_value

The self object uses dot syntax to get/add/modify values associated with names

These names are called the objectʼs attributes

__init__ Constructor

23

def __init__(self, value):

 self.value = value

Recall that names in Python that are surrounded by double-underscores have a special
meaning to Python
● e.g. __name__ is the current moduleʼs name

The __init__ method is called the constructor method (or constructor for short) and
is called when a new instance of the class is being created

It is responsible for initializing the object in whatever way is required, assigning all of
the attributes (often given through method parameters)

__init__ Constructor

24

def __init__(self, value):

 self.value = value

The __init__ method returns the object that has been constructed (even though it
doesnʼt have a return statement, it is an implicit return)

Itʼs as if it were written as:

def __init__(self, value):

 self.value = value

return self # this would actually give an error though)

More Methods
def get_value(self):

return self.value

def set_value(self, new_value):

self.value = new_value

The class contains two more method definitions that look like regular functions

Both have self as their first argument (meaning “this object”)

get_value is an example of a “getter” method, returning internal state

set_value is an example of a “setter” method, modifying internal state
25

Creating Objects
Now that we have our class “blueprint” defined, we can create instances of it!

To create a new object, we use the constructor (the class name) as if it were a function
name:

>>> b1 = Box(42) # b1.value is set to 42

>>> b2 = Box(-1) # b2.value is set to -1

26

New Style Conventions
To distinguish between functions, methods, objects, etc. some important PEP8 Python
conventions need to be followed:
● Every class definition should have a docstring underneath the class header

describing the class
● Every method should be separated with 1 line, not 2 lines (pycodestyle will

luckily catch this for you!)
● Classes follow PascalCasing (e.g. CaltechStudent, not caltechStudent or

caltech_student)
● Every class should have an __init__ method, ideally a __str__ method,

sometimes a __len__ method.

27

Using Objects
Once we have created objects, we can use them, similar to how we have done with
built-in objects (strings, lists, files, Axes, etc.)

>>> b1_value = b1.get_value()

42

>>> b1.set_value(0)

b1_value

42

>>> b1_value = b1.get_value()

0

>>> Box.get_value() # error - we must call on instances of Box

28

Moving on From Simple Boxes...
Letʼs explore how we might define some other, more interesting classes!

Some student ideas:
● Course

● LOLCharacter

● Pet

● Dog
● Plant

● Coffee

● FoodItem

● Laptop

● ...
29

Check Your Understanding
Can you put into your own words what each of object-oriented terms terms mean?

Class

Object

Attributes

__init__

self

Object-oriented programming

30

Next Time
More OOP in Python
● More interactive lectures this week! El will take student ideas and build them into

class exercises/live-coding

Classes vs. Client Programs

Handling errors with Exceptions
● Using raise to raise exceptions on invalid arguments
● Using try/except to handle raised exceptions

31

