
CS 1: Intro to CS
Intro to Error-Handling

Summary
Handling errors with Exceptions:
● Using raise to raise exceptions on invalid arguments
● Using try/except to handle raised exceptions

How to use:
● This slide deck is specific to error-handling (supplemented with

error-handling-starter.py and Reading 19) for reference; we will prioritize raising
errors with raise (used in OOP unit and MP6) and later try/except

2

Introducing Errors
Today, we will introduce error-handling in Python and:
1. Learn how to handle errors correctly
2. Understand better how Python works internally

First, let's motivate error-handling by thinking of possible errors we could account for in
our programs.

3

Errors
Many possible errors can occur when running a Python program

What examples can you think of?
● Division by 0
● Accessing a non-existent index of a list
● Accessing a non-existent key in a dictionary
● Trying to store a new value into a tuple
● Trying to open a file (for reading) that does not exist
● ….

4

Errors
Consider:

>>> def print_reciprocal(x):

... recip = 1.0 / x

... print(f'reciprocal of {x} is {recip}')

>>> print_reciprocal(0)

This will not give a legal value (Python doesn't have infinitely large integers)

How should Python handle errors like this?

5

Handling Errors: 1st Attempt
Could ignore the error and just continue (“silent failure”)

What's a problem with this?

Not an effective way to proceed!
● We don't know why the error occurred or where it occurred

6

Handling Errors: 2nd Attempt
Could halt the program

Advantage: Prevents a crash

Problems?
● Too drastic (some errors can be recovered reasonably)
● Still don't know why error occurred or where it occurred

7

Handling Errors: 3rd Attempt
Could print an informative error message and halt the program

Advantages:
● Prevents a crash
● Know why error happened

Problems?
● Too drastic (some errors can be recovered reasonably)
● Still don't know where error occurred

8

Handling Errors: 4th Attempt
Could print an informative error message stating why and where the error occurred and
halt the program

Advantages:
● Prevents a crash
● Know why and where error happened

Problems?
● Too drastic (some errors can be recovered reasonably)

This is what Python does by default

9

In Python
>>> a = 1 / 0

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ZeroDivisionError: division by zero

There are two components to this error message...

10

In Python
>>> a = 1 / 0

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ZeroDivisionError: division by zero

The error message states what kind of error occurred and more specifically, why the
error occurred in this particular case

11

In Python
>>> a = 1 / 0

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ZeroDivisionError: division by zero

The traceback states where the error occurred

We'll look at this in more detail soon

12

Error Recovery
Errors do not have to result in the termination of the entire program

Many kinds of errors can be recovered from:
● Bad input -> prompt for new input
● Nonexistent files -> use a different file
● Invalid constructor argument -> use default value and assume client reads

docstring on this default initialization.
● etc.

13

Error Recovery
No general rule on how best to recover from errors (specific to particular situation
where error occurs)

We need a general mechanism

It should say:
● Under normal circumstances, do this
● If error A happens, do A'
● Else if error B happens, do B'
● etc. until all possibilities handled

14

Another Example
Suppose we want a function to compute roots of a quadratic equation (with two
possible solutions for x returned as a tuple)

We want to solve this equation for x:

a * x2 + b * x + c = 0

Solution 1: (-b + sqrt(b2 - 4*a*c)) / (2 * a)

Solution 2: (-b - sqrt(b2 - 4*a*c)) / (2 * a)

What is needed for these solutions to work?

15

Example
def solve_quadratic_equation(a, b, c):

 """

 Solves the quadratic equation

 a*x**2 + b*x + c == 0

 for x.

 """

 sol1 = (-b + sqrt(b**2 - 4.0 * a * c)) / (2.0 * a)

 sol2 = (-b - sqrt(b**2 - 4.0 * a * c)) / (2.0 * a)

 return (sol1, sol2)

Problem: What to do if a == 0?

This makes sol1 and sol2 uncomputable (division by 0)

16

Strategies
Could always use an if statement to check whether a was 0 before computing anything
else
● Not a bad strategy, however usually a will not be 0
● Would rather have the code represent the typical case first and the exceptional

cases only when the typical case fails
● Let's try a different approach

17

Introducing try and except
Python provides a special kind of statement for dealing with errors that can be
recovered from: a try/except statement

We'll first show what this looks like in the context of our example, then explain it in
detail

Note that if a == 0, the quadratic equation a*x**2 + b*x + c = 0 becomes:

b*x + c = 0

or in terms of x,

x = -c / b (assuming b is nonzero)
18

Example using try and except
def solve_quadratic_equation(a, b, c):

 """

 Solves the quadratic equation

 a*x**2 + b*x + c == 0

 for x, returning a 2-element tuple of the solution.

 """

 try:

 sol1 = (-b + sqrt(b**2 - 4.0 * a * c)) / (2.0 * a)

 sol2 = (-b - sqrt(b**2 - 4.0 * a * c)) / (2.0 * a)

 return (sol1, sol2)

 except ZeroDivisionError: # a == 0

 sol = -c / b # assume b != 0

 return sol
19

try and except
Structure of a try/except statement:

try:

<some code which may result in an error>

except <name of the error>:

<code to run if the error occurs>

try and except say:
● Try to execute the block of code (try block)
● If a particular error occurs, execute this other block of code (except block)

20

try and except
Structure of a try/except statement:

try:

<some code which may result in an error>

except <name of the error>:

<code to run if the error occurs>

try and except are block-structured statements like if, for, and while

Can have multiple statements in a try or except block, but must all be indented the
same

21

try and except: Rules
try:

<some code which may result in an error>

except <name of the error>:

<code to run if the error occurs>

You cannot use a try block without except (there's also no point if you could)

Also cannot have except block without a preceding try block

22

try and except: Rules
try:

<some code which may result in an error>

except <error1>:

<code to run if error1 occurs>

except <error2>:

<code to run if error2 occurs>

Can also have multiple except blocks, each corresponding to a different kind of error

23

Rules: Nested try and except?
def solve_quadratic_equation(a, b, c):

 """Solves the quadratic equation a*x**2 + b*x + c == 0 for x."""

 try:

 sol1 = (-b + sqrt(b**2 - 4.0 * a * c)) / (2.0 * a)

 sol2 = (-b - sqrt(b**2 - 4.0 * a * c)) / (2.0 * a)

 return (sol1, sol2)

 except ZeroDivisionError: # a == 0

 try:

 sol = -c / b

 return sol

 except ZeroDivisionError: # b == 0

 print('No solution for x when a and b are 0')

Note: The nested try/except could be simplified with if/else in this case.

24

try and except: Rules
try:

<some code which may result in an error>

except:

<code to run if any error occurs>

Can also have a “catch-all” except block, which will execute if any kind of error occurs

Usually this is very poor design (not specific enough to the particular problem)

25

try and except: Rules
try:

<some code which may result in an error>

except <error1>:

<code to run if error1 occurs>

except <error2>:

<code to run if error2 occurs>

except:

<code to run if any other error occurs>

But OK sometimes to use catch-all exception handler after more specific handlers

26

More Rules
When evaluating a try/except statement, only one except statement's code can be
executed

Even if there is a catch-all except block at the end, it's not executed if a previous except
block's code was executed

27

Terminology
Errors that occur in code are called exceptions
● They represent “exceptional conditions”
● These don't always correspond to errors!

Signaling an error is called raising an exception (or throwing an exception)

Handling an error is called catching an exception

Therefore, exceptions are raised in try blocks and caught in except blocks

28

Exceptions
Exceptions are actual Python objects

They can have associated data
● Often, an error message that indicates more precisely what went wrong

Some examples of Python errors:
● ZeroDivisionError (division by zero)
● IndexError (list index out of bounds)
● FileNotFoundError (e.g. reading a non-existent file)
● And many, many others

29

try/except again
Let's look in detail at what happens when an exception is handled

Sample function:

def print_reciprocal(x):

 try:

 recip = 1.0 / x

 print('reciprocal of {} is {}'.format(x, recip))

 except ZeroDivisionError:

 print('Division by zero!')

30

try/except again
>>> print_reciprocal(5.0)

 try:

 recip = 1.0 / 5.0 # 0.2

 print('reciprocal of {} is {}'.format(5.0, 0.2))

 except ZeroDivisionError:

 print('Division by zero!')

This prints: reciprocal of 5 is 0.2 (except block is never executed)

31

try/except again
>>> print_reciprocal(0.0)

 try: # 1.

 recip = 1.0 / 0.0 # 2. error is thrown here

 print('reciprocal of {} is {}'.format(x, recip))

 except ZeroDivisionError: # 3.

 print('Division by zero!') # 4.

This prints: Division by zero! (the second line in the try block is not executed,
nothing else happens after the exception has been handled)

32

Another Example: What Lines are Executed?
def print_reciprocals():

 values = [-1, 0, 1]

 for i in range(5):

 try:

 recip = 1.0 / values[i]

 print(f'reciprocal of {values[i]} at {i} is {recip}')

 except IndexError: # when i > 2

 print(f'index {i} out of range')

 except ZeroDivisionError:

 print('Division by zero!')

33

Example: i == 0
values = [-1, 0, 1]

for i in range(5): # (0, 1, 2, 3, 4)

try:

 recip = 1.0 / values[i] # 1.0 / -1 = -1.0

 print(f'reciprocal of {values[i]} at {i} is {recip}')

 except IndexError: # when i > 2

 print(f'index {i} out of range')

 except ZeroDivisionError:

 print('Division by zero!')

This prints: reciprocal of -1 at 0 is -1

34

Example: i == 1
values = [-1, 0, 1]

for i in range(5): # (0, 1, 2, 3, 4)

try:

 recip = 1.0 / values[i] # 1.0 / 0

 print(f'reciprocal of {values[i]} at {i} is {recip}')

 except IndexError: # when i > 2

 print(f'index {i} out of range')

 except ZeroDivisionError:

 print('Division by zero!')

This prints: Division by zero!

35

Example: i == 2
values = [-1, 0, 1]

for i in range(5): # (0, 1, 2, 3, 4)

try:

 recip = 1.0 / values[i] # 1.0 / 1 = 1.0

 print(f'reciprocal of {values[i]} at {i} is {recip}')

 except IndexError: # when i > 2

 print(f'index {i} out of range')

 except ZeroDivisionError:

 print('Division by zero!')

This prints: reciprocal of 1 at 2 is 1

36

Example: i == 3
values = [-1, 0, 1]

for i in range(5): # (0, 1, 2, 3, 4)

try:

 recip = 1.0 / values[i] # values[3] does not exist

 print(f'reciprocal of {values[i]} at {i} is {recip}')

 except IndexError: # when i > 2

 print(f'index {i} out of range')

 except ZeroDivisionError:

 print('Division by zero!')

This prints: index 3 out of range

37

Raising Exceptions with raise
Use the raise statement if you want to raise your own exception:

>>> raise ValueError

This will result in:

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ValueError

Moving forward, we will be omitting Traceback components of error output.

38

Raising Exceptions with raise
You can add an error message to a raise statement with most built-in exceptions:

>>> raise ValueError('Invalid value')

This will result in:

ValueError: Invalid Value

This can be used to give more detail about what specific error happened

39

Example

40

Consider a function net_cost(price, tax_amount) which computes the net cost of
an item as price + (price * tax_amount). For example, net_cost(1.00,
0.08) would return 1.08 for an item with a price of $1.00 and 8% tax.

If either argument is < 0, this is invalid (but does not throw an exception when passed).

>>> net_cost(-50, 0.08)

-90.0 # !

>>> net_cost(-50, -0.08)

90.0 # !

Instead of just “hoping the client knows what to do”, we can raise our own ValueError
exception if either argument is < 0

Example
def net_cost(price, tax):

 """

 Returns the net cost of an item with given `price`

 and `tax` rate.

 """

 if price < 0 or tax < 0:

 raise ValueError('price and tax must both be non-negative')

return price + (price * tax)

Notice: the raise statement doesn't have to be in a try/except statement

41

Example
Using the net_cost function:

price = float(input('Enter a price: '))

tax_rate = float(input('Enter a tax rate: '))

try:

 cost = net_cost(price, tax_rate)

 print(f'The cost of your item is ${cost:.2f}.')

except ValueError as e: # e is the ValueError object that was raised

 print(e) # prints error message

Note: This is an example where the specific exception we're catching is not in the
function the error is raised in, but in the code that called the function

42

New except Syntax
Here, we notice a new form of except block syntax:

try:

 # code that may raise an error

except ValueError as e:

 # code that uses the ValueError instance

The caught ValueError object is given a name (e) that can now be used within the
except block as it sees fit (e.g. by printing)

as is another Python keyword - where have we seen it before?

43

import <module> as <name>

Slightly Different Example
We could also handle the exception directly in the net_cost function:

def net_cost(price, tax):

 """

 Returns the net cost of an item with given `price`

 and `tax` rate.

 """

 try:

 if price < 0 or tax < 0:

 raise ValueError('price and tax must both be non-negative.')

 return price + (price * tax)

 except ValueError as e:

 print(e)

44

Slightly Different Example
Handling an exception in the function that raised it is occasionally useful, but more
often it is not the right thing to do

What we want to ask is:

● Whose responsibility is it if this function fails?

45

Slightly Different Example
For net_cost, whatever called net_cost was responsible for giving net_cost valid
inputs

If that doesn't happen, it's not net_cost's problem

● Just raise the exception and let other code handle it

We say that net_cost has a precondition that its inputs are both >= 0

If a precondition is violated, just inform the caller by raising an exception

46

Slightly Different Example
Code that called net_cost has many different options to handle the error:
● Print error message and quit
● Ask user for a different input
● Choose another value (default value)
● etc.

When the exception-raising function (e.g. net_cost) is not given sole responsibility for
making these decisions, code can be much more flexible with more options for callers
to choose from

Next, letʼs look more closely into how to create our own exceptions

47

Another Example: Error-Handling with Files
When we introduced files and opening them with open(filename, 'r'), we
assumed that the files being read existed

When a file opened for reading does not exist, a FileNotFoundError exception is
raised

This is very common, e.g. when a user inputs the wrong file name

How can we handle this in our code?

Let's write a function to read a file having a number per line, and summing all of the
numbers.

48

First Attempt (Without Error-Handling)

49

def sum_numbers_in_file(filename):

 sum_nums = 0

 f = open(filename, 'r')

 for line in f:

str.strip() strips away any spaces and \n character

 sum_nums += int(line.strip())

 f.close()

 return sum_nums

This is ok, but it makes a lot of assumptions. What kind of errors could occur?
● The file might not exist
● The file may contain lines with non-numbers
● The file may contain lines with multiple numbers
● The file may have blank lines

Error-Handling

50

First, we need to know what kinds of Python exceptions are raised when these errors
happen

If the file doesn't exist, a FileNotFoundError exception is raised when attempting to
open the file

What about other errors?

Error-Handling

51

What if the line contains something other than numbers?

42 # OK

-1 # OK

forty-two # Error: ValueError

 # Error: ValueError

1 2 3 # Error: ValeuError

10010 # OK

ValueError occurs when trying to execute this line::

sum_nums += int(line)

ValueError

52

sum_nums += int('forty-two')

Gives this error message:

ValueError: invalid literal for int() with base 10: 'forty-two'

Breaking it down:
● Exception type: ValueError
● The data associated with the exception gives more information about what caused

the exception: invalid literal for int() with base 10: 'forty-two'

ValueError

53

What about blank lines?

sum_nums += int('')

results in:

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 10: ''

Python raises the same exception!

ValueError

54

What about lines with multiple numbers?

sum_nums += int('1 2 3')

results in:

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 10: '1 2 3'

Python raises the same exception again! We can use this to group the mis-formatted
lines with an exception case for ValueError

FileNotFoundError and ValueError

55

To summarize, the function sum_numbers_in_file:
● Takes in an input argument representing a file of numbers, one per line
● Outputs the sum of all numbers in the file
● May raise a FileNotFoundError if the file doesn't exist
● Otherwise, may raise a ValueError if the file isn't formatted correctly

(non-numbers on blank lines or too many numbers on some lines)

We need to be able to handle two different kinds of error situations as well as the
normal case

How many try/except blocks will we need?

Handling Exceptions

56

New version with exception handling:

def sum_of_numbers_in_file(filename):

try:

Previous code

except FileNotFoundError:

What to do here?

except ValueError:

What to do here?

Handling a FileNotFoundError

57

Remember that there are multiple ways to handle any particular error

Error-handling in programs should always consider an intuitive and user-friendly way to
handle incorrect input

What are some things we could do to handle a FileNotFoundError (i.e. when the
argument is a filename that doesn't exist)?
● Interactively prompt the user for a different filename, or
● Immediately return 0 as the sum value since the filename is invalid
● Abort entirely (don't handle the exception) and let the program terminate

Handling a ValueError:

58

What are some things we could do to handle a ValueError (i.e. when the file is
improperly formatted)?

● Assume the line is no good, just use 0 as the number and keep going
● Assume the entire file is corrupt, return 0 as the sum for the function
● Abort entirely (don't handle the exception) and let the program terminate

sum_nums_in_file (with Error-Handling)
def sum_nums_in_file(filename):

 while True:

 try:

 f = open(filename, 'r')

 # process sum for each line, return sum when done

 except FileNotFoundError:

 print(f'Couldn\'t read file: {filename}')

 filename = input('Enter another filename: ')

 except ValueError:

 print(f'Invalid line in file: {filename}')

 filename = input('Enter another filename: ')

59

Design Decisions...

60

There are many choices to make!

And one further question:
● Should this function be in charge of deciding what happens in the event of an

error?

If reading in a small number of files, perhaps it's ok to prompt a user for a new filename
in case the given one doesn't exist

If trying to read a large list of files, this would not be appropriate

