
Extra Material (Optional): NumPy

1



Matplotlib with NumPy
NumPy is used for numerical processing, comparing its fundamental data type (a 
"numpy array") with lists

You will also see some NumPy in Lab 06 (provided)

NumPy is very useful when combined with Matplotlib! You won't be required to use it 
for Part C, but it is useful to know the basics of NumPy and how you could incorporate it 
with Matplotlib for future work

2



Resources
You don't need to know more than what is presented in this slide deck/provided code, 
but here are a few recommended resources if you're curious about going deeper into 
NumPy (in general, we don't recommend resources that you find on your own, unless 
you know how to identify the "good" from the "bad")

This Quick Start was posted as a reading, which is the recommended reading for getting 
started with NumPy (you don't need to know more than what we cover in class, but it is 
a helpful resource to go deeper into the basics). Make sure you do not follow the 
instructions for conda, which we strongly do not recommend for CS1.

A very nice Visual Guide to NumPy and ND-Arrays/Matrices (credit cited for some of the 
visualization on these slides!)

3

https://numpy.org/devdocs/user/absolute_beginners.html
https://betterprogramming.pub/numpy-illustrated-the-visual-guide-to-numpy-3b1d4976de1d


Matplotlib with Numpy
We have seen how to plot data with (x, y) points and two lists of [xs], [ys]

In practice, Matplotlib is most commonly used with another library called NumPy, which 
provides a ton of useful features for data processing

While you don't need numpy to use Matplotlib, it is common enough that we'll learn 
some of the basics (you don't need to know more than what we teach!)

4



NumPy
NumPy is one of the most popular Python libraries, with many applications:
● Scientific/mathematical computing
● Serves as the "backend" to a lot of other libraries, including Pandas
● Image processing
● Machine learning

There are a lot of features in NumPy, but when integrating with Matplotlib we leverage 
its special "NumPy" array, which is analogous to a Python list

Visualizations are very useful when it comes to learning NumPy, and credit is given to 
this Visual Guide for some diagrams featured in this slide deck.

5

https://betterprogramming.pub/numpy-illustrated-the-visual-guide-to-numpy-3b1d4976de1d


A Basic NumPy Array
The easiest way to construct a numpy array is using np.array(lst)
● By default, the datatype matches that of the datatypes passed (they must be 

homogenous, meaning the same type); this can also be specified with a keyword 
argument, dtype=<datatype> but only if it is different than (but compatible with) 
the value types of the passed list

● The array has a "shape" in terms of rows and columns, just like in matrix 
terminology; the below array has 3 values in a single list (1D)

6



NumPy Arrays vs. Python Lists
You don't need to know about O(n) yet, but here's a good visualization (this slide was 
discussed in more detail in lecture) about the difference between arrays and lists under 
the hood:

7

Source: 
https://betterprogramming.pub/numpy-illustrated-t
he-visual-guide-to-numpy-3b1d4976de1d



NumPy Arrays vs. Python Lists
Unlike Python lists, NumPy arrays:
● Require fixed types (e.g. all ints, all floats, all strs) and do not allow for mixed types
● Are generally faster than Python lists

○ No type checking/conversion required when iterating over
○ Less memory taken under the hood (contiguous memory)
○ Caveat: Appending to lists is usually faster than appending to a NumPy array

● Have easy-to-specify "shapes" to represent N-Dimensional arrays (matrices)
● Have a ton of useful operator overloading features for common matrix operations
● Note: There is nothing a NumPy array can do that a list cannot

Q: If NumPy arrays are faster than lists, why don't we always use NumPy? (they aren't 
always faster!)

8

https://towardsdatascience.com/python-lists-are-sometimes-much-faster-than-numpy-heres-a-proof-4b3dad4653ad


NumPy with Matplotlib

9

# Use np's arange to create a range of float radians

xs = np.arange(0, math.pi*2, 0.05)
# Using numpy's basic trignometric functions
ys1 = np.sin(xs)
ys2 = np.cos(xs)
ys3 = np.tan(xs)
ys4 = np.tanh(xs)

# Quadrant (2 x 2) plot
fig, axs = plt.subplots(2, 2)

# (2, 2) -> 2D list of 2 rows, each holding two cols
(ax1, ax2), (ax3, ax4) = axs

# Plot sin, cos, etc. functions
ax1.plot(xs, ys1)
ax2.plot(xs, ys2)
...



numpy.arange([start, ]stop, [step, ]dtype=None, …)

In Python, we have seen how to use range to 
generate a sequence of integers

There is a similar function in NumPy called 
arange ("array" range), which also returns a 
sequence of values, but supports float values as 
well (where as range requires ints)

10

Source: https://realpython.com/how-to-use-numpy-arange/



range(...) vs. np.arange(...)

range(...)
● Default function in Python

○ Independent of modules, so can be 
more efficient for simple use cases

● Returns a successive collection of numbers 
which are individual values represented as 
a range object

● range is often faster than arange() when 
used in Python for loops, especially when 
thereʼs a possibility to break out of a loop 
soon. This is because range generates 
numbers in the lazy fashion, as they are 
required, one at a time.

11

np.arange(...)
● Part of the NumPy library (requires 

importing numpy)
● Returns a special ndarray (a NumPy 

array)
● Useful for large datasets and fast 

numerical processing with NumPy
● Can be used with many NumPy 

features, including special *, +, -, etc. 
operations



np.arange vs. np.linspace
np.arange and np.linspace are the two most popular functions to quickly 
generate an array of values in NumPy

Both support floats (different than Python's range), but:
● np.arange is used when you have a start, stop (exclusive), and step size
● np.linspace ("linear space") is used when you want to generate a sequence 

evenly separated between start and stop, and stop is inclusive

12



np.arange vs. np.linspace ("linear space")

13



Wrapping Up
You don't need to know more than what we covered in this lecture but here are the key takeaways:
● The fundamental datatype in NumPy is the array (sometimes called "ndarray" for n-dimensions), which 

unlike Python's list type:
○ Takes up less memory because all types are homogenous (the same) and the consecutive memory 

allocated is guaranteed to be enough
○ Is faster for matrix operations as a result, only if you are not changing the length of the array (if you 

are, the Python list will be faster, since the memory is not consecutive and thus we don't have to 
reallocate consecutive space)

○ Can be used with *, -, +, np.cos, etc. to quickly compute operations on the N-dimensional array
○ Is very useful to pass to Matplotlib.pyplot plotting functions that require a list

● np.arange and np.linspace are popular functions to generate a sequence of values, particularly with 
floats that cannot be passed to Python's built-in range function

● Just because you can do something in NumPy, does not mean every program should use it, as there is 
overhead to be aware of (discussed in class)

14


