
CS 1: Intro to CS
From Files and Dictionaries to
CSV Processing!

L12 Exit Ticket Questions:
● Q1: Takeaways
● Q2: Questions you have
● Q3: What is a question you have for students and/or TAs

that could be used for example CSV data this week? (e.g.
a short answer question)

Download lec12_csv_starter.py and lec12_datasets.zip from
course website

Administrivia
Make sure you have been working on MP3!

MP4 will be out soon, and covers CSV processing/extensions to file processing and
dictionaries

2

CSV File Processing

3

CSV Files
“Comma-Separated Values”
● Other delimiters may be used such as | or \t

Programs like Excel, Google Sheets, and Numbers all
support CSV files and related tabular data and
display them as tables

Real-world data is commonly stored in structured
data formats like CSV since itʼs easier for parsing and
analyzing data than plain text

4

VSCode Extension: Rainbow CSV

5

VSCode Extension: Rainbow CSV

6

CSV File Processing

7

Know that we know about dictionaries, we can use them to easily process CSV files

There are several ways to process CSV files in Python, but the easiest to get started with
is with the built-in csv library

The csv library has objects and methods available to read, write, and process CSV data
● csv.reader(file)

● csv.DictReader(file)

● csv.writer(file) and writerow

● csv.DictWriter(file, fieldnames) with writeheader, writerow

Weʼll take a look at the basics today with some example datasets

https://docs.python.org/3/library/csv.html

Opening up a CSV File
We open a CSV file similar to how we
open other files, but we use the csv
library to process the data in a more
structured way

8

The csv.reader Object
The csv.reader object is what does most of the CSV processing for us

It takes a file object as input and an optional delimiter string (default is ',')

We can iterate over the reader object with a for loop just as we would with lists, files,
etc.

Each row in the reader object is represented as a list of strings generated by splitting
on the specified delimiter string (e.g. ['Row 1A', 'Row 1B', 'Row 1C'])

9

Header Row vs. Data Rows
The first row in a CSV file usually
contains the column names. We
can use this to format our results
nicely.

We will see this distinction when
writing CSV files as well.

10

The csv.DictReader Object
Treating each row of data as a list of strings isnʼt usually ideal, and this is when
dictionaries come in handy!

The csv library has another object called csv.DictReader which stores each row as a
dictionary instead of a list. The keys are the columns for the CSV file and the values are
that rowʼs values for each column

The keys are determined by the header row of the CSV file; if your CSV file does not have
a header row, youʼll need to specify these manually with a second fieldnames
argument to the DictReader constructor.

11

The csv.DictReader Object

12

Preview to Monday

13

Writing CSV Files with the csv.writer Object
The process of reading/writing CSV
files is similar to that of
reading/writing other files

We can write files with csv.writer
and writerow method

14

Writing CSV Files with the csv.DictWriter Object
Similar to the motivation of csv.DictReader, we can use csv.DictWriter to more
easily write a list of dictionaries to a CSV file:

15

with open('data/new_csv.csv', 'w') as csv_file:
 rows = <list of dicts> # [{'a': 1, 'b':2}, {...},...]
 # key list for first dict, e.g. ['a', 'b']
 columns = rows[0].keys()
 writer = csv.DictWriter(csv_file, fieldnames=columns)
 writer.writeheader() # write column header, e.g. a,b
 for row in rows: # {'a': 1, 'b': 2}
 writer.writerow() # writes 1,2 on next line

General approach:
1. Open the file
2. Rows should be a list of dictionaries
3. Determine columns as list of string column

names
4. Create csv.DictWriter(file_obj,

fieldnames=col_list)
5. Write column header first with

writer.writeheader()
6. Loop through list of row dictionaries, and

write each one in order

Writing CSV Files with the csv.DictWriter Object

16

with open('data/new_csv.csv', 'w') as csv_file:
 rows = <list of dicts> # [{'a': 1, 'b':2}, {...},...]
 # key list for first dict, e.g. ['a', 'b']
 columns = rows[0].keys()
 writer = csv.DictWriter(csv_file, fieldnames=columns)
 writer.writeheader() # write column header, e.g. a,b
 for row in rows: # {'a': 1, 'b': 2}
 writer.writerow() # writes 1,2 on next line

csv.DictWriter: writer.writeheader()
When using csv.DictWriter, it's easy to forget to write the column headers. You specify the column names
with the fieldnames keyword argument, and writer.writeheader() to "flush" (write) the column
header to the new file.

17

More Examples/Practice
You can find more examples in the lec12_csv_examples.py using lec12_data.zip
CSV files posted on the course website (you can ask questions on Discord if you have
any!)

● The assigned reading for CSV processing is also posted (an alternative to usual CS 1
readings)

Weʼll go over some more practical examples of CSV processing next week in Monday's
lecture and Tuesday's lab; over the weekend, think of some examples of datasets you
interact with and how you might extend what you've learned to analyze them in Python!

18

Summary
Dictionaries are a built-in Python data type that allows us to associate keys to values
● They have many useful methods
● They can be iterated over in for loops
● They are used often in Python code

CSV files are very common formats for storing data, and we can extend our standard
file-processing with the built-in csv library to parse tabular data more efficiently
● csv.reader(file) to create a reader object (rows are lists of strings)
● csv.DictReader(file) to create a DictReader object (rows are dictionaries)
● csv.writer(file) to create a CSV writer object working with string list rows
● csv.DictWriter(file) to create a CSV writer object working with dictionary

rows
19

Wed. 05/01 (Review, Live-Coding)
Agenda:

● Working through periodic table dataset (student request)

Administrivia:

● Thank you all who have filled out the midterm feedback survey! Please do so if you
haven't :) A few things to be aware of…

● Lecture times: El has moved things around and will be in ANB 104 ~30 minutes
before lectures on most days (except for the occasional conflict noted on Discord)

● We'll be holding regular review/worktime/morale sessions on Saturday afternoons;
2PM?

20

Midterm Feedback (Cont.)
● Engagement opportunities this week: Sharing practice problems for CSV

processing/dictionaries with datasets of your choice!
● We are going to be stricter on assignment deadlines; if you do not successfully

submit to CodePost by 11:30PM on Monday you will have to use a Rework
submission (do not submit right before the deadline; we won't be extending due to
11:29PM submissions that have issues)

● More practice? Some problems on dictionaries here! El will also post more lecture
checks for additional practice (bring to OH!)

● MP 5 will be data visualization with Matplotlib; utilize today's lecture to think about
data science questions and what subsets of data (x and y lists) are needed to
visualize

● El will be posting Exit Ticket responses regularly 21

https://www.codestepbystep.com/problem/view/python/collections/dict/area_codes

