CS 1. Introto CS

From Files and Dictionaries to
CSV Processing!

L12 Exit Ticket Questions:
Q1: Takeaways
Q2: Questions you have
Q3: What is a question you have for students and/or TAs
that could be used for example CSV data this week? (e.g.
a short answer question)

Download lec12_csv_starter.py and lec12_datasets.zip from
course website

Administrivia
Make sure you have been working on MP3!

MP4 will be out soon, and covers CSV processing/extensions to file processing and
dictionaries

CSV File Processing

I CANT BELEVE

THIS DATA ERROR

INVALIDATES A

YEAR AND A HALF

OF MY RESEARCH.
|

T WJAS ABOUT
TO PUBLISH.

\

DONT PANIC.
YOU HAVE
TWO OPTIONS.

YEAH?

KT

I) REDO YOUR ANALYSIS AND
SHARE WHAT RESULTS YOU
CAN, WHETHER POSITIVE OR
NEGATIVE. [T’ DISAPPOINTING,
BUT THESE THINGS HAPPEN.

/

2) DESTROY THE EVIDENCE. USE YOUR
MATERIALS AND RESEARCH METHODS
TO BUILD A SUPERWEAPON. CONQUER

EARTH AND RULE

s

WITH AN |RON FIST.

TREMBLE BEFORE
1Y ANOMALOLBLY
PRODUCTIVE' ALGAE!
EXCEPT THE ANOMALY
WAS AN ARTIFACT:

TREMBLE BEFORE
MY NORMAL ALGAE!

CSV Files

“Comma-Separated Values”
e Other delimiters may be used such as | or \t

Programs like Excel, Google Sheets, and Numbers all
support CSV files and related tabular data and
display them as tables

Real-world data is commonly stored in structured
data formats like CSV since it’s easier for parsing and
analyzing data than plain text

TN

A B C

ColA ColB ColC

Row 1A Row 1B Row 1C
Row 2A Row 2B Row 2C
Row 3C Row 3B Row 3C

Col
Row

Row
Row

Extensions: Marketplace (¢ 8X)

EXTEN... Y O =

rainbow csv

Rainbow CSV D> 2.2M

Highlight CSV and TSV f...

mechatroner Install | v

indent-rainbow & 4M
Makes indentation easie...

oderwat Install | v

Rainbow Brac... < 1.8M

A rainbow brackets exte...

2gua Install |

VSCode Extension: Rainbow CSV

nobel_prizes.csv — Untitled (Workspace)

B nobel_prizes.csv X

lec11 > data > B nobel_prizes.csv

il

year,category, id, firstname,surname,motivat
2016, physics,928,David J.,Thouless,"""for
2016, physics,929,F. Duncan M.,Haldane,"""f
2016,physics,930,J. Michael,Kosterlitz,"""
2016, chemistry,931,Jean-Pierre, Sauvage, """
2016, chemistry,932,Sir J. Fraser,Stoddart,
2016, chemistry,933,Bernard L.,Feringa,"""f
2016, medicine, 927,Yoshinori,Ohsumi, """ for
2016, literature,937,Bob,Dylan,"""for havi
2016, peace,934,Juan Manuel,Santos,"""for

2016,economics,935,01liver,Hart,"""for thei

VSCode Extension: Rainbow CSV

EXPLORER

V UNTITLED... (5 B3 O &
Vv lec11

Vv data
B csistaff_emails.csv
B csistaff.csv
B csv_example_pipe_...
B csv_example.csv
B dictionary.csv

lec11-csv_complete....

B new_csv.csv

B nobel_prizes.csv
B periodic_table.csv
B pokedex.csv

> extra_data

B nobel_prizes.csv X

lec11 > data > B nobel_prizes.csv

year,category, i

2016, ph
2016, physi
2016, physics
2016, chemi
2016, chemi
2016, chemi
2016, mec
2016, it
2016,
2016, ec
2016, ec
2015, phy
2015, pt
2015 1Gk

surname,motivation
Thouless,"""for theor
Haldane,"""for th
Kosite rlhiEzZmsfio it
Sauvage,"""for t
Stoddart,"""fc
Feringa,"""for tf
Ohsumi,"""for his o
B as L sor having cre
Col 4: firsthame "UNEOE his re
Hart,"""for their cor
Holmstrom,"""for their
Kajita,"""for the disc
McDonald,"""for the
Llndahl ""for mechanJ

CSV File Processing

Know that we know about dictionaries, we can use them to easily process CSV files

There are several ways to process CSV files in Python, but the easiest to get started with
is with the built-in csv library

The csv library has objects and methods available to read, write, and process CSV data

csv.reader(file)

csv.DictReader(file)

csv.writer(file) and writerow

csv.DictWriter(file, fieldnames) withwriteheader,writerow

We'll take a look at the basics today with some example datasets

https://docs.python.org/3/library/csv.html

Opening up a CSV File
We open a CSV file similar to how we

open other files, but we use the csv lec1 > data > B csv_example.csv

library to process the data in a more 1 Col A ,Col B ,Col C
Row 1A,Row 1B,Row 1C
Row 2A,Row 2B,Row 2C
Row 3C,Row 3B,Row 3C

B csv.example.csv X

structured way

DEBUG CONSOLE JUPYTER TERMINAL - f p Python

>>> import csv
>>> with open('data/csv_example.csv') as csvfile:
reader = csv.reader(csvfile)
for row in reader:
print(row) # first row printed is header

['CoLA ', '"Col B "', 'Col C']
['Row 1A', 'Row 1B', 'Row 1C']
['Row 2A', 'Row 2B', 'Row 2C']
['Row 3C', 'Row 3B', 'Row 3C'l]

The csv.reader Object

The csv.reader object is what does most of the CSV processing for us
It takes a file object as input and an optional delimiter string (defaultis ', ')

We can iterate over the reader object with a for loop just as we would with lists, files,
etc.

Each row in the reader object is represented as a list of strings generated by splitting
on the specified delimiter string (e.g. ['Row 1A', 'Row 1B', 'Row 1C'])

Header Row vs. Data Rows

B csv.example.csv X

The first row in a CSV file usually

lec11 > data > B csv_example.csv

contains the column names. We 1 Col A ,Col B ,Col C
. Row 1A,Row 1B,Row 1C
can use this to format our results Row 2A.Row 2B.Row 2C

nicely. Row 3C,Row 3B,Row 3C

DEBUG CONSOLE ~ JUPYTER TERMINAL - (@ Python +~ (1] W

We will see this distinction when

.. . >>> with open('data/csv_example.csv') as csvfile:
ertlng CSV files as well. reader = csv.reader(csvfile)
- line_number = 0
for row in reader:
print(" | '.join(row)) # format each element in row nicely
' | ".join(['A’, 'B*, C'] > A | B | C"
if line_number == @: # format header nicely
print('-' % 25)
line_number += 1

ColLA | Col B | Col C
Row 1A | Row 1B | Row 1C

Row 2A | Row 2B | Row 2C
Row 3C | Row 3B | Row 3C

The csv.DictReader Object

Treating each row of data as a list of strings isn’t usually ideal, and this is when
dictionaries come in handy!

The csv library has another object called csv.DictReader which stores each row as a
dictionary instead of a list. The keys are the columns for the CSV file and the values are
that row’s values for each column

The keys are determined by the header row of the CSV file; if your CSV file does not have
a header row, you’ll need to specify these manually with a second fieldnames
argument to the DictReader constructor.

11

The csv.DictReader Object

lec11 > data > B csv_example.csv
1 Col A ,Col B ,Col C
- Row 1A,Row 1B,Row 1C
Row 2A,Row 2B,Row 2C
Row 3C,Row 3B,Row 3C

DEBUG CONSOLE JUPYTER TERMINAL

>>> with open('data/csv_example.csv') as csv_file:
reader = csv.DictReader(csv_file)
for row in reader:
print(row)

'Row 1A', 'Col B ': 'Row 1B', 'Col C': 'Row 1C'}
'Row 2A', 'Col B ': 'Row 2B', 'Col C': 'Row 2C'}
'Row 3C', 'Col B ': 'Row 3B', 'Col C': 'Row 3C'}

Preview to Monday

Writing CSV Files with the csv.writer Object

The process of reading/writing CSV
files is similar to that of lectl > data > B new.csv.csy

reading/writing other files 1 first,last,email
E1l,Hovik, hovik
Maddie,Ramos,maramos

B new_csv.csv X

We can write files with csv.writer
and writerow method

DEBUG CONSOLE JUPYTER TERMINAL [p Python

>>> with open('data/new_csv.csv', 'w') as csvfile:
usernames = {('El', 'Hovik'): 'hovik',
('Maddie', 'Ramos'): 'maramos'}
columns = ['first', 'last', 'email']
writer = csv.writer(csvfile)
writer.writerow(columns)
for key in usernames:
first, last = key # tuple-unpacking!
username = usernames [key]
writer.writerow([first, last, username])

Writing CSV Files with the csv.DictlWriter Object

Similar to the motivation of ecsv.DictReader, we can use ecsv.DictWriter to more
easily write a list of dictionaries to a CSV file:

General approach: with open('data/new _csv.csv', 'w') as csv_file:
. rows = <list of dicts> # [{'a': 1, 'b':2}, {...},...]
L. Open the file # key list for first dict, e.g. ['a', 'b']
2. Rows should be a list of dictionaries columns = rows[0].keys ()

writer = csv.DictWriter(csv_file, fieldnames=columns)
writer.writeheader() # write column header, e.g. a,b
names for row in rows: # {'a': 1, 'b': 2}

4. Create csv.DictWriter(file_obj, writer.writerow() # writes 1,2 on next line
fieldnames=col_list)

5. Write column header first with
writer.writeheader()

6. Loop through list of row dictionaries, and
write each onein order

3. Determine columns as list of string column

15

Writing CSV Files with the csv.DictWriter Object

lec11 > data > B new_csv.csv

with open('data/new_csv.csv', 'w') as csv_file:
rows = <list of dicts> # [{'a': 1, 'B':2}, {...},...] a,b
key list for first dict, e.g. ['a', 'b'] 1,2
columns = rows[0] .keys () 2,4
writer = csv.DictWriter(csv_file, fieldnames=columns)

writer.writeheader () # write column header, e.g. a,b
. DEBUG CONSOLE JUPYTER TERMINAL
for row in rows: # {'a': 1, 'b': 2}
writer.writerow() # writes 1,2 on next line >>> with open('data/new_csv.csv', 'w') as csv_file:
rowl = {'a': 1, 'b': 2}
row2 = {'a': 2, 'b': 4}
rows = [rowl, row2]
columns = rows[0].keys() # key list for first dictionary
writer = csv.DictWriter(csv_file, fieldnames=columns)
writer.writeheader()
for row in rows: # {'a': 1, 'b': 2}
writer.writerow(row) # writes 1,2 on next line

16

csv.Dictiriter: writer.writeheader ()

When using csv.DictWriter, it's easy to forget to write the column headers. You specify the column names
with the £ieldnames keyword argument, and writer .writeheader () to "flush" (write) the column

header to the new file.

lec11 > data > B new_csv.csv
El,Hovik
Maddie,

DEBUG CONSOLE JUPYTER TERMINAL

>>> with open('data/new_csv.csv', 'w') as csv_file:
usernames = [{'first': 'El', 'last': 'Hovik', 'email':

{'first': 'Maddie', 'last': 'Ramos', 'emai

columns = ['first', 'last', 'email']
columns = usernames [0].keys ()
writer = csv.DictWriter(csv_file, fieldnames=columns)
for row in usernames:
writer.writerow(row)

lec11 > data > B new_csv.csv

DEBUG CONSOLE JUPYTER TERMINAL

>>> with open('data/new_csv.csv', 'w') as csv_file:
950 usernames = [{'first': 'El', 'last': 'Hovik', 'email': 'ho
{'first': 'Maddie', 'last': 'Ramos', 'email':
columns = ['first', 'last', 'email'l
columns = usernames [0].keys ()
writer = csv.DictWriter(csv_file, fieldnames=columns)
writer.writeheader()
for row 1n usernames:
writer.writerow(row)

17

More Examples/Practice

You can find more examples in the lec12_csv_examples.py using lecl12_data.zip
CSV files posted on the course website (you can ask questions on Discord if you have

any!)

e The assigned reading for CSV processing is also posted (an alternative to usual CS 1
readings)

We’ll go over some more practical examples of CSV processing next week in Monday's
lecture and Tuesday's lab; over the weekend, think of some examples of datasets you
interact with and how you might extend what you've learned to analyze them in Python!

18

Summary

Dictionaries are a built-in Python data type that allows us to associate keys to values

They have many useful methods
They can be iterated over in for loops
They are used often in Python code

CSV files are very common formats for storing data, and we can extend our standard
file-processing with the built-in csv library to parse tabular data more efficiently

csv.reader(file) to create a reader object (rows are lists of strings)
csv.DictReader(file) to create a DictReader object (rows are dictionaries)
csv.writer(file) to create a CSV writer object working with string list rows
csv.DictWriter(file) to create a CSV writer object working with dictionary
rows

19

Wed. 05701 (Review, Live-Coding)

Agenda:
e Working through periodic table dataset (student request)
Administrivia:

e Thank you all who have filled out the midterm feedback survey! Please do so if you
haven't :) A few things to be aware of...

e Lecturetimes: El has moved things around and will be in ANB 104 ~30 minutes
before lectures on most days (except for the occasional conflict noted on Discord)

e We'll be holding regular review/worktime/morale sessions on Saturday afternoons;
2PM?

20

Midterm Feedback (Cont.)

e Engagement opportunities this week: Sharing practice problems for CSV
processing/dictionaries with datasets of your choice!

e We are going to be stricter on assignment deadlines; if you do not successfully
submit to CodePost by 11:30PM on Monday you will have to use a Rework
submission (do not submit right before the deadline; we won't be extending due to
11:29PM submissions that have issues)

e More practice? Some problems on dictionaries here! El will also post more lecture
checks for additional practice (bring to OH!)

e MP 5 will be data visualization with Matplotlib; utilize today's lecture to think about
data science questions and what subsets of data (x and y lists) are needed to
visualize

e Elwill be posting Exit Ticket responses regularly 21

https://www.codestepbystep.com/problem/view/python/collections/dict/area_codes

