
CS 1: Intro to CS
Intro to File Input/Output,
Dictionaries and Tuples

Source: https://xkcd.com/1301/

Administrivia
MP3 covers file processing, program decomposition with modules, and basic
tuples/dictionaries
● Please start this one early!

Come to OH! No specific questions?
● Bring practice exercises from lecture, talk through your strategy with a TA
● Draw out each function for MP 3 on paper or as function stubs (what are the

argument types? Any return? Edge cases to handle/document?)
● Get help on any VSCode debugging or pycodestyle questions
● Ask a TA about their experiences in CS/advice for CS 1 students
● Or, just come in and work on MP 3/HW 1 Rework. And say hi!

2

Learning Objectives
Know how to read and write files

Identify the difference between readlines() and readline() to process files

Identify common pitfalls in file processing:
1) Common (semantic) bugs
2) Program design

Preview dictionary/tuple syntax (continued Wednesday)

Practice various applications of file-processing, pitfalls, and program design (continued
Wednesday)

3

Files
Data that programs can act on are either temporary or permanent

So far, all of our data has been temporary (e.g. variables and functions disappearing
when the program is done)

We often want to work with permanent data though

4

Files
Data stored on computers are generally in the form of files (e.g. .txt, .csv, .doc,
.png, .pdb, .py, etc.)

Files are said to be “persistent”
● Still around after the program exits
● Still around after the computer shuts off

Files are very useful, and many real-world applications need to store some data

5

https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/tutorials/pdbintro.html

Some Example Applications with Files
Imagine you have a huge file which described the average size of raspberries in Finland
for each day between from 1923 to 2011, and you want to find the lowest value. Then
you can use python to read this file and find the lowest value.

Reading a .txt file of student names in a class to create a randomly generated seating
chart.

You could take in a text file and see what the five most commonly used words were in
order to generate tags to describe it.

6

Some Example Applications with Files
For machine learning applications, you may want to read in data from a CSV file to train
and test your model on.

An input .csv file can contain the luminosity of a star over a period of time. It can be
used as an input to a program that calculates the star's age using luminosity.

Tweets can be stored as a .txt file. a piece of python code reads the .txt file, and extracts
all of the emojis from the tweets. so that the final output is a list of emojis.

A file could be used to store the statistics and personal attributes (e.g., number of wins
in the game) of a person's character in a video game. This way, when the game is closed,
it still has a way of accessing the permanent values that pertain to the character.

7

Some Example Applications with Files
Could load .txt files of books from different authors and look at the differences in the
distributions of punctuation types across authors (just count every punctuation type).

We can read an image file, change the pixel data by applying a filter, and then display
the new image.

Programming a 'choose-your-own-adventure' game, where the choices and storylines
are labeled and defined in a .txt file

8

Some Example Applications with Files
Plagiarism checker: take in the file and finding the number of matches by comparing
with other sources

Suppose you were working on a research project and some data that you downloaded
off of a database came in the form of a .txt or .csv file. By reading this .txt file in your
program (and converting the data from strings to the necessary type) you can complete
the necessary computations to do your research!

9

Some Example Applications with Files
You can read the output of another program. For example, you can run fast code In C
and read an output in python for post-processing.

Opening a set of astronomy stellar coordinates to find distances between stars.

Natural language processing! You need to read a file input and output a new file that
processed what the inputted file said.

One application will be reading a .txt file with DNA sequences, search for and print out
position of a specific sequence of interest, or compare two strings in different files for
similarities and differences, calculate affinity to a protein according to features of the
sequence.

10

Returning to our AQI Application

11

Returning to our AQI Application
Recall our AQI program from Friday, counting the number of AQI values from Sept.
12th-19th 2020 that are above 150 (unhealthy to go outside)

We can change our program to store these values in a files (say, aqis.txt) instead of a
temporary list variable

How do we get the values to use
in our code?

12

Opening a file
Files in Python are represented as file objects

These are not the same as the file, just a convenient way to interact with the file in
Python

First, we need to create a file object in Python linked to the real file, then we can use file
methods on that object

File objects are created using the built-in open function

13

https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files
https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files

Opening a file
open(<name of file>, <mode>)

● <name of file> is just the fileʼs name as a string
● <mode> determines how you can interact with the file object

Now the file aqis.txt has a corresponding Python object called f (a common variable
name for file objects, but you can change it)

Method calls on f will do something to the file aqis.txt

14

Ways of opening a file
Three typical values of <mode>:

● 'r' means that file has been opened “read-only” (you can't change the file, and it
must already exist)

● 'w' means that file has been opened for writing (creating a new file from scratch,
rewriting it if it already exists)

● 'a' means that file has been opened for appending (file must exist, will be
changed)

Since weʼre only reading aqis.txt, we use 'r'

15

Closing a file
Once weʼre done working with a file object, we should close it (prevents further actions
from occurring to the file)

If we forget, the object will be closed when the program exists, but this is poor
programming practice

We'll start with this approach to better understand the way files are processed, then
show the preferred with syntax (which doesn't require an explicit f.close()) which
we'll use moving forward (and which we encourage you to use in MP 3)

16

Reading from files
When reading from text files, can think of them as a bunch of lines (strings ending with
the '\n' character)

Python methods for reading from text files:
● readline() - reading a single line from a text file (returns a string)
● readlines() - read all the lines of the text file (returns a list of strings)
● read() - read all the lines of the text file (returns a single string with lines

separated by the '\n' character)

Note: The last two methods should rarely be used, as they are less efficient than reading
line-by-line; keep this in mind in your labs/MPs!

17

f.readlines()

Notes:
● Each element is a string, need to convert it to a number before using it
● Each string ends in a newline character (except the last)
● Changing the elements of the list will not change the contents of the file to change

(the list and file are independent once readlines completes)

18

f.readline()

Important notes:
● If there are no more lines (end of file) readline returns the empty string ''
● An empty line in the file will return a line which consists only of the newline

character '\n'

19

What if you want to remove '\n'?

Strings have a method called .rstrip() to remove whitespace characters on the right
end of the string (.lstrip() removes on the left, .strip() removes from both sides)

We wonʼt need this for our AQI example (int(line) will ignore the '\n') but you will
want to use this in many other file-processing applications.

20

f.readline() with AQIs

Problem: How do we know when to stop?

21

f.readline() with AQIs
Letʼs use our new while loop:

22

DRY again
We have repeated code again!

23

A DRYer Solution

24

Using for with files
Python allows a useful shortcut using the for statement:

This is the preferred way to write this

25

The with Statement
So far, weʼve seen the following pattern for file processing:

f = open('aqis.txt', 'r')

use file...

f.close()

It's very common to forget to close the opened file…

A common approach for file-processing in Python works with the with statement

26

The with Statement
We can instead write this:

with open('aqis.txt', 'r') as f:

 # use file...

This will close the file automatically when the with block is exited (even if an exception
is raised in the block)

Do not use f.close()
if using with

27

Writing Files
So far, we've seen how to read files. But what about the 'w' and 'a' permissions?

The complement of reading lines is writing lines:

with open('new_file.txt', 'w') as f:
 f.write('Hello world!\n')
 f.writelines(['Line 1', 'Line 2'])
 # f.close() by default using with

Be careful though, opening a file with 'w' will overwrite any existing file! Use 'a' to
append lines to the end of an existing file.

28

Summary
Files are represented as file objects in Python

Files must be “opened” before use (creates a file object) and “closed” after use
● We can use the with statement as another way to open files to implicitly close

them

The readlines() and readline() methods can be used to read data from a file
line-by-line
● Be careful with the \n at the end of each line depending on your situation!

29

Wrap-Up: Preview of Tuples/Dictionaries
(Code demo, continued Wednesday)

30

Case Study: Scantron Grader
Code Demo (starter files on course website)

Summary of Monday's class exercise:
● Demoing scantron_gen_test_files.py as a way to automate

sample-file-generation with file-writing
● Understanding the problem (side-by-side comparison of key and student Scantron file)
● Translating your approach to "grading by hand" into Python with file-processing, loops,

and variables
● Implementing grade_scantron(filename) in

scantron_grader_starter.py
● CYU: Why shouldn't we use readlines() or read()? How many loops did we end up

needing to process both files together?
31

https://eipsum.github.io/cs1/index.html#schedule

Next Time
More tuples/dictionaries

32

Tuples
Tuples are another Python data type

Basically, a “read-only” list that cannot be modified

Tuple syntax is simple:

(1, 2, 3, 4, 5)

Tuples of length 1 written like this: (1,)

Because (1) is just the number 1 (normal use of parentheses)

Empty tuple is: ()

33

Tuples
Tuples support many, but not all, of the list operations

34

Tuples
Similar to lists and strings, can concatenate tuples with the + operator and index with
[idx]:

Check your understanding: What does str_tup[0][0] evaluate to? 35

Tuples are Immutable!
Unlike a list and like a string, you cannot change the contents of a tuple:

36

Why tuples?
Tuples are basically a more restricted kind of list. So what good are tuples, anyway?

Not really an essential language feature
● Python could do fine without them, and many languages don't support them

There are some cases where tuples are convenient:
1. Returning multiple values from functions
2. Tuple unpacking
3. for loops with multiple bindings

37

1. Multiple return Values
Functions in Python an only return a single value (most of the time, this is all we need)

Sometimes, it's useful to be able to return more than one value from a function (e.g.
counts of each vowel type in a given string)

We do this by creating a tuple of the returned values, and returning that one value

38

Example
One built-in function is divmod, which returns both the quotient and remainder of its
arguments as a tuple

39

Example
We could define divmod ourselves:

40

2. Tuple Unpacking
We can use divmod even more elegantly with what's known as tuple unpacking:

Python also lets us write this without parentheses:

41

Tuple Unpacking
Structure of a tuple unpacking:

(a, b, c) = t

t[0] is assigned to a, t[1] is assigned to b, t[2] is assigned to c

Tuple t must already be defined as a tuple and have the same number of elements on
left-hand side, otherwise an error will occur

42

Using tuples to swap Two Variables
Tuple unpacking lets us do a cute trick: swapping the value of two variables

Why does this work?

43

3. for Loops with Multiple Bindings
We can also use tuples with for loops to assign (“bind”) values to multiple names every
time through the loop:

We'll get back to this...

44

Check Your Understanding
What are two differences between lists and tuples?

What are one similarities between tuples and strings?

Identify an example of a variable or function return that makes sense as:

1. A tuple instead of a list or str
2. A list instead of a str or tuple
3. A str instead of a list or tuple

45

Returning to the enumerate Function
Last week, we introduced range with the following for loop example:

The purpose of range(len(nums)) is to produce a list of the indices of nums

Seems like a lot of work for something so simple...

46

The enumerate Function
In Lab02, we introduced you to the enumerate function to write code like this:

enumerate takes a sequence and outputs the indices (i) and elements (e) of the
sequence one by one; we can now identify this (i, e) as a tuple!

47

The enumerate Function
Conceptually, it's as if enumerate produces a list of (index, element) tuples:

>>> enumerate(['a', 'b', 'c'])

[(0, 'a'), (1, 'b'), (2, 'c')]

This is not actually what happens…

But it is how it behaves inside a for loop. Like with range, we can see this more clearly
with the list() wrapper:

48

The enumerate Function
enumerate objects, like range objects, contain an iterator that allows them to be used
inside a for loop

Lots of Python objects have associated iterators!
● lists, strings, tuples (sequences)
● files
● range objects
● enumerate objects
● dictionaries (we'll see these later)
● … and you can define your own (we'll also see this later)

49

The enumerate Function
Back to our example:

Note that we don't need the e variable anywhere in this example

Can name e anything we want (doesn't matter)
● But cannot leave it out, or i will become a tuple
● Usually we name it _ (indicates unused name)

50

The enumerate Function
What happens when we leave e out?

51

Instead, can do:

The enumerate Function
Compare:

for i in range(len(nums)):

with:

for i, e in enumerate(nums):

Which one you use is up to you...
● Both are acceptable, but enumerate is considered to be better style

52

Dictionaries

53

A dictionary is a new kind of Python data type

Before we describe what it is, letʼs describe a problem it could solve...

Caltech Usernames
Each member of Caltech has a unique username (e.g. hovik for El Hovik, gmccabe for
Gavin McCabe)

These usernames are used in various contexts, such as constructing a Caltech email
(hovik@caltech.edu, gmccabe@caltech.edu)

How can we easily keep track of which username is associated with which full name?

54

Caltech Usernames
For each individual, we need:
● The full name of the individual
● Their unique username

Given what we know now, how could we do this?

55

Lists?
You could have a list of names and usernames:

usernames = ['El Hovik', 'hovik',

 'Gavin McCabe', 'gmccabe', ...]

But it would not be easy to find the username corresponding to a different name

It would be better if a name and the corresponding username were connected in some
way

56

List of tuples?
You could have a list of (name, username) tuples:

usernames = [('El Hovik', 'hovik'),

 ('Gavin McCabe', 'gmccabe'), ...]

Letʼs see what we would need to do in order to find the username corresponding to a
particular name (e.g. “Gavin McCabe”)

57

List of tuples?
We could write code like this:

This is not bad, but:
● Canʼt modify username (tuples are immutable)
● Have to look through entire list in worst case to find one username
● Cumbersome!

58

Back to Dictionaries
A dictionary is a data structure that stores associations between keys and values

In the previous example:
● key: the individualʼs name
● value: the username

DIctionaries make it easy to:
● Find the value given the key
● Change the value given the key
● Add more key/value associations

And theyʼre efficient!

59

Keys and Values
The values stored in a dictionary can be any Python value

Keys can only be immutable (unchangeable) Python values, e.g.:
● strings
● tuples
● numbers (rare)

Usually, we use strings as keys

60

Some Examples of Dictionaries
Student ideas:

“If you were programming a game of Scrabble, you would need to associate a point value
with each letter of the alphabet.”

“For a chemical reaction, we could have molecules (strings) map to their concentrations
taken at many intervals (could be string of number values, or a list or tuple).”

“Year mapped to number of potatoes grown in Ireland for that year.”

“An item in a store (string keys) associates to a price (float values).”

“You could map Lego set ID numbers to the names of the actual sets themselves. For
example, 75280 would be matched to 501st Legion Clone Troopers.

61

Some Examples of Dictionaries
“One example is the texting shortcuts on iPhones, where it will have a list of abbreviations
to automatically change to longer phrases.”

“The Dewey Decimal System for a library is an example of this. In this case, the numbers
000-999 are used as keys to tell the readers what subject their book will be about - the
values (e.g. 920 --> biographies; 400 --> languages)”

“Journal articles on the internet map to specific DOI (digital object identifier) values,
which people to find the exact journal article they are looking for.”

Some personal favorites used for web data… Reddit posts and Pokemon

62

https://www.reddit.com/r/aww/.json
https://courses.cs.washington.edu/courses/cse154/webservices/pokedex/pokedex.php?pokemon=pikachu

Dictionary Syntax
The contents of a dictionary are written between curly braces ({ and })

The empty dictionary (no key/value pairs) is written as: {}

In general, a dictionary is a comma-separated collection of key : value pairs:

{ key1 : value1, key2 : value2, … keyN : valueN}

An example dictionary might look like this:

{'El Hovik' : 'hovik', 'Gavin McCabe' : 'gmccabe'}

63

Getting a value given a key
Suppose we want to get Gavinʼs username from our (mini) dictionary of usernames:

Note that this looks like accessing a list with a value of 'Gavin McCabe'

Python is “overloading” the meaning of the square brackets

With list indexing, the value inside brackets can only be an integer (the index of the list)

With a dictionary, itʼs any key value
64

Changing a value at a key
Suppose Gavin wants to change his username with an alias.

Can change the dictionary value too:

usernames['Gavin McCabe'] = 'gavin'

Like the syntax for changing a list value, except that the “index” is a string, not a number

65

Adding a new key/value pair
We add a new key/value pair to a dictionary by “changing” a key that wasnʼt there
before:

66

Accessing a nonexistent key
Hereʼs what happens if you try to access a key that isnʼt in the dictionary:

67

Deleting a key/value pair
We use del to remove a key/value pair from a dictionary:

del is actually a special Python statement
● Itʼs not a function, so no parentheses around its argument

del can remove elements from things other than dictionaries (e.g. lists)
● But more useful with dictionaries than lists

68

Back to our example
Letʼs improve the example by using a tuple of first and last names as keys:

Does this work?

69

● This is ok because both tuples and strings are immutable (remember that keys
must be immutable)

Back to our example
Can access usernames using tuple as key (but not single tuple components):

70

Dictionaries and for loops
Weʼve seen many things that can be looped over using for loops:
● lists
● strings
● files

We can also use a for loop over dictionaries

for key in usernames:

 print(key)

Looping over a dictionary loops over the keys in the dictionary (not the values)

71

Looping over the keys in our dictionary of usernames:

Dictionaries and for loops

72

However, we usually want the values, not the keys: How can we modify our loop to print
the values instead?

Dictionaries and for loops

73

More on Booleans
Booleans are True/False values

However, Python has a notion of “truthiness” for non-boolean values

Several things besides the False value are considered to be False by Python:

● The empty string: ''
● The empty list: []
● The number 0

Most other values can be considered True

74

Boolean Operators
Python also supports three built-in boolean operators: not, and, and or (all take
boolean arguments and return booleans)
● not - negates the boolean value

75

Boolean Operators
and and or are operators that take two boolean arguments and return a boolean value
● and returns True if both values are True, otherwise False
● or returns True if either value is True, otherwise False

76

Boolean Operators
Generally use and and or with expressions that evaluate to boolean values (e.g.
relational operators)

77

The in operator
Last time, we saw the in operator in sequences:

Can also use in with dictionaries, where <key> in <dictionary> means: is the key
<key> one of the keys in <dictionary>?

78

