
CS 1: Intro to CS
Wrapping up Modules and Lists; Loops and Intro to
Conditionals

Administrivia
MP 2 is out, due Thursday 11:30PM

HW1 feedback is published (read through your TAs feedback, even -0's!)

Tomorrow's lab will cover lists and loops

2

Agenda
● More about lists and modules
● Loops

○ The for statement
● Decision-making with conditionals

○ The if statement
○ The else and elif statements

Note: Class went through lists/modules in depth with posted code, recording is posted to
supplement loops/conditionals

3

Learning Objectives
● Be able to define, access, and modify list sequences
● Motivate the importance of loops and iterative programming
● Know how to evaluate boolean expressions
● Be able to use boolean expressions to conditionally-execute code with for if

statements
● Identify the difference between if, elif, and else conditional statements (more next

time)

4

Returning to List Code Demo
Thereʼs quite a lot we can do with lists, so letʼs jump into some code to explore…

See .py files under todayʼs lecture for the code and some practice exercises!

● loops_lists.py (list demo code)
● extra_list_practice.py (3 practice exercises)
● duck_loop.py (complete duck loop program with emoji module, previewing

loops for Monday)

We have also provided a Lec05Lists.java analog to lec05_lists.py (you
aren't expected to know the Java code, but students have shared it's been helpful to
compare the two languages!)

5

Loops
So far, weʼve seen multiple kinds of data
● Ints, floats, strings, lists

Weʼve also learned how to write functions with def and return

Today, we introduce another fundamental concept: a loop

6

Loops
Code that executes repeatedly

Python has two kinds of loop statements:
● for loops (this lecture)
● while loops (next lecture)

7

Loops over lists
Loops are often associated with lists

Basic idea:

● For each element of the list
● Do the following … [chunk of code]

Example:

● For each element of a list
● Print the element

8

Example

9

Structure of a for Loop
for <name> in <list>:

 <chunk of code>

Similar to def and return, for and in are keywords (reserved words)

Chunk of code is repeated for each element in the list

Each time though, the next element of <list> is assigned to <name> and <chunk of
code> is executed

The chunk of code is called a block

10

Technical Note
for <name> in <list>:

 <block>

Technically, the thing that comes after in does not have to be a list

It can be any Python value that is iterable

We will explain this in more detail later

11

The += operator and friends
When you see a line in the form

x = x + 10

You can write

x += 10

Many operators op have op= counterparts

● +=, -=, *=, /=, &=

You should use them where applicable as they male code more concise and readable

12

Unravelling the Loop

Is equivalent to:

13

for item in lst Syntax
The variable name for the item does not matter:

for foo in cities:

 print(foo)

But we like to use descriptive variable names, so the following equivalent is preferred:

for city in cities:

 print(city)

14

Loop Syntax Rules
1. Must have a colon (:) at the end of the for item in lst declaration

15

Loop Syntax Rules
2. Every line in a block must be indented the same amount, otherwise an error occurs

16

Loop Syntax Rules
3. The end of the block is indicated when indent goes back to what it was before the

for loop began

17

Application: Summing word lengths
Here is the code we practiced at the end of Friday's lecture:

18

Output:
51

Loops and Strings
We can also use a for loop to loop over characters of a string (a string is iterable!)

19

Nested Loops
Can nest one for loop inside another:

etc.

20

Nested Loops

First time through outer loop: city is 'Pasadena'
Inner loop: char is 'P', then 'a', etc.
Second time through outer loop: city is 'Los Angeles'
Inner loop: char is 'L', then 'o', etc.

21

Check Your Understanding
What is the output of the following code?

for i in [1, 2, 3]:

 for j in [1, 2, 3]:

 print(i + j)

22

https://eipsum.github.io/cs1/lectures/lec06/lec06_list_cyu.py.txt

Check Your Understanding
What is the output of the following code (from Lecture Check)?

nums = [1, 2, 1]

chars = ['^', '_', '^']

for n in nums:

 result = ''

 for c in chars:

 result += (c * n)

 print(result)

23

Application: Summing word lengths
Another way to do this:

24

Output:
51

Decision Making in Programs
So far, our programs have always done the same thing no matter what

But there are many scenarios where programs need to handle decision-making based
on certain conditions.

What are some examples of problems you might need to make different decisions based
on data?

25

An Application Close to Home...

26
Source:
https://www.iqair.com/usa/california/pasadena

https://www.iqair.com/usa/california/pasadena

When is an AQI Unhealthy?

27

Analyzing AQI
Suppose we wanted to write a program to know which days of a week (letʼs say, Sept.
12th to 19th 2020 in Pasadena) have “unhealthy” air quality, as determined by the EPI
air quality index (AQI)

How might we write code to count how many AQI values are above 150?

Need to break down into two subproblems:
1. How do we test to see whether or not a particular AQI is greater than 150?
2. How do we use that information to control our program?

28

https://www.iqair.com/usa/california/pasadena
https://www.iqair.com/usa/california/pasadena

Relational Operators
To test a number against another number, we need a relational operator
● Examples: <, <=, >, >=, ==

Relational operators return a boolean value (True or False)

29

Relational Operators
x == y (is x equal to y?)

x != y (is x not equal to y?)

x < y (is x less than y?)

x <= y (is x less than or equal to y?)

x > y (is x greater than y?)

x >= y (is x greater than or equal to y?)

30

== vs. =
Note: The == operator is completely different from the = (assignment) operator

● Itʼs very easy to mix these up when first learning them!

a = 10 # assign a the value 10

a == 10 # is a equal to 10?

31

Testing the AQI
For the first part of our problem, we need to test if an AQI value is greater than 100
(unhealthy for sensitive groups to go outside)

>>> aqi = 161

>>> aqi > 150

True

32

The if statement
Using the condition, we can use an if statement to:
● Execute a block of code if some condition is true
● Otherwise do nothing

>>> aqi = 161

>>> if aqi > 150:

 print('It\'s unhealthy to go outside!')

It's unhealthy to go outside!

33

Structure of an if statement
if <boolean expression>:

 <block of code>

Like a for loop, if statements:
● Colon (:) must come at end of if line
● Block of code can consist of multiple lines (with correct indentation)

34

Interpreting an if statement
if <boolean expression>:

 <block of code>

● If the <boolean expression> evaluates to True, then execute the <block of
code>

● Otherwise, donʼt

In either case, continue by executing the code after the if statement

35

Back to our Problem
For any given AQI value, we now know how to compare it with 150 and do something
based on the result

Since we have a whole list of items, we will need a for loop as well!

Also need to keep track of number of AQI values seen so far which exceed 150

36

Back to our Problem: Pseudocode
Initialize a count of AQI values over 150 to 0

For each value in our list:
● If the value is greater than 150 (unhealthy) update our counter by 1

Print the number of values found to the console

37

Back to our Problem: Pseudocode
Initialize a count of AQI values over 150 to 0

For each value in our list:

● If the value is greater than 150 (unhealthy) update our counter by 1

Print the number of values found to the console

aqis_above_150 = 0

38

Back to our Problem: Pseudocode
Initialize a count of AQI values over 150 to 0

For each value in our list:

● If the value is greater than 150 (unhealthy) update our counter by 1

Print the number of values found to the console

aqis_above_150 = 0

for value in aqis:

39

Back to our Problem: Pseudocode
Initialize a count of AQI values over 150 to 0

For each value in our list:

● If the value is greater than 150 (unhealthy) update our counter by 1

Print the number of values found to the console

aqis_above_150 = 0

for value in aqis:

 if value > 150:

aqis_above_150 += 1

40

Back to our Problem: Pseudocode
Initialize a count of AQI values over 150 to 0

For each value in our list:

● If the value is greater than 150 (unhealthy) update our counter by 1

Print the number of values found to the console

aqis_above_150 = 0

for value in aqis:

 if value > 150:

aqis_above_150 += 1

print(f'{aqis_above_150} of {len(aqis)} days were unhealthy')

41

Testing it Out

42

More Decisions
Recall that using an condition, we can use an if statement to:
● Execute a block of code if some condition is true
● Otherwise do nothing

What if we instead want to do something else when the condition isnʼt true?

43

Practice On Your Own: generate_email 2.0
Recall the generate_email function from last week. Letʼs take what weʼve learned so
far and generalize the program to take a list of 2-value lists ([firstname, lastname])
and return a new list of Caltech email addresses. The list argument should remain
unchanged.

This is a good exercise to practice using a helper function within another function!

44

Extending Conditionals: if and else
An if statement can optionally include a second part called the else clause, which is
executed only if the boolean expression in the if statement evaluates to False

if <boolean expression>:

 <block of code>

else:

<different block of code>

45

if and else with our AQI example

46

Multi-way Tests
aqi = 161

if aqi < 150:

aqis_below_150 += 1

if aqi == 150

aqis_at_150 += 1

if aqi > 150

aqis_above_150 += 1

Whatʼs wrong with this code?

47

Multi-way Tests
The problem:
● For many aqi values, some of the three if statement conditions may be evaluated

unnecessarily
● We can use else to handle this

48

Second Try
Use else:

aqi = 161

if aqi < 150:

aqis_below_150 += 1

else:

if aqi == 150:

aqis_at_150 += 1

else:

aqis_above_150 += 1

This works and is efficient, but nested ifs like this are not very readable...
49

Third Try
How would we say this in English?

“If the aqi is less than 150, do <thing1>, else if the aqi is 150, do <thing2>, else do
<thing3>”

We can express this in Python using an elif statement inside an if (elif is short for
“else if”)

50

Third Try
This leads to:

aqi = 161

if aqi < 150:

aqis_below_150 += 1

elif aqi == 150:

aqis_at_150 += 1

else:

aqis_above_150 += 1

This is both efficient and readable!

51

Using Conditions in while Loops
So far, we've introduced iterative programming with the for loop over lists, strings, and
range sequences

Sometimes:
● Weʼre not working with lists or strings
● We donʼt have a fixed number of things to loop over
● We donʼt know in advance how many times we will have to loop

52

Structure of a for loop:
for <item> in <seq>:

 <chunk of code>

Structure of a while loop:
while <boolean expression>:

<block of code>

The while loop shares similar syntax rules with if and for statements (e.g. : at end,
indentation rules)

for vs. while Loops

53

Evaluation of the while loop
while <boolean expression>:

<block of code>

1. Evaluate the <boolean expression>
2. If it evaluates to True, execute <block of code> and repeat from the beginning
3. Otherwise, continue with the next line after the while loop

54

Example
Starting at the number 5, print all the numbers from 5 down to 1

55

Unravelling the while Loop

56

The while loop is much cleaner!

while loop vs. for loop
We could also write this with a for loop. How?

57

Another Example
Use input to read words and print them, stopping when “Q” or “q” is read (for “Quit”)

In this case, we cannot know how many times we will have to go through the loop

This is a much more natural situation in which to use a while loop...

58

Not the best solution...

Whatʼs a code quality issue here?

59

Not the best solution...

Redundancy!

Programming principle: “DRY” (Donʼt Repeat Yourself)

Repeated code usually means thereʼs a better way to write the code (just like weʼve seen
with functions) 60

A First Attempt

No more redundancy!

But whatʼs an issue with this solution?

61

A Better Attempt with break

A break statement directs Python to stop and exit the loop, continuing the rest of the
program

Helps follow the DRY principle, both reducing redundancy and ensuring the program
halts

62

An Even Better Attempt
Can also write:

Why is this ok?

This code is preferable to the previous version, as the else is unnecessary

63

We don’t always need a break...
break statements are not needed very often, and are never “necessary” (can always
re-write without using break)

But when a test naturally fails in the middle of a loop body, break can make code much
cleaner

A good rule of thumb is to write a solution without break until it's motivated enough to
reduce redundancy (without being "a hack")

64

Practice Problems
while_mystery_3

for_to_while

dice_sum

flip_coin_three_heads

guessing_game

guess_2d

65

https://www.codestepbystep.com/problem/view/python/loops/while_mystery_3
https://www.codestepbystep.com/problem/view/python/loops/for_to_while
https://www.codestepbystep.com/problem/view/python/loops/dice_sum
https://www.codestepbystep.com/problem/view/python/loops/flip_coin_three_heads
https://www.codestepbystep.com/problem/view/python/loops/guessing_game
https://www.codestepbystep.com/problem/view/python/loops/guess2d

Coming Attractions
On Friday, we will introduce file processing:
● Types of files and applications
● Processing files as lists of strings (lines ending with '\n')

○ Using loops!
● Overview of common pitfalls of file IO

○ Edge cases: empty files, first line, last line
○ What does it mean to inefficiently read a file?
○ How do we write a new file? Update an existing one without wiping the

original contents?
○ How do we work with multiple files at once?
○ Why is it important to read line-by-line vs. loading all the lines at once?

66

