
CS 1: Intro to CS
Modules and Intro to Lists

Wrapping up docstrings: How and why

Modules and the __main__ module

Lists: Our first data structure!
● Creating lists
● 0-based indexing
● Functions with lists

(Starter code and extra practice can be found on the course website)

Today's Learning Objectives

2

Exit Ticket Questions
What are three takeaways from today?

What questions do you currently have?

Student question of the day: What have you found most interesting so far in this class?

3

Scope is Important!
So far, our variables have been defined top-down - later assignments will shadow
earlier ones.

Functions introduce their own local scope - variables inside functions only exist in
during the lifetime of a function call.

4

Parameters vs. Arguments
Formal parameters are simply names for the argument values passed in a function call.
The position of arguments will determine what formal parameter name they are
assigned.

They have no relationship to other variable names in the program and will override
other variables if there is a naming conflict.

1 def f(x, y):

2 z = 2 * y # here, z is a local variable!

3 return z + x

4

5 a = 2

6 b = 20

7 ans1 = f(a, b)

8 ans2 = f(b, a) # b and a are mapped to x and y in f, respectively
5

Practice: Variables and Scoping
What is the result of executing the following program? (scope_mystery.py)

1 x = 1
2 y = 2
3 z = 3
4
5 def square(x):
6 return x * x
7
8 def mystery(x, y, z):
9 print('x: ', x, 'y: ', y, 'z: ', z)
10
11 mystery(x, y, z)
12 mystery(x + y, x, square(y))

6

What are three takeaways from
today?

What questions do you currently
have?

Student question of the day: What
have you found most interesting so
far in this class?

Practice: Variables and Scoping
What is the result of executing the following program?

1 x = 1
2 y = 2
3 z = 3
4
5 def square(x):
6 return x * x
7
8 def mystery(x, y, z):
9 print('x: ', x, 'y: ', y, 'z: ', z)
10
11 mystery(x, y, z)
12 mystery(x + y, x, square(y))

Output:
x: 1 y: 2 z: 3
x: 3 y: 1 z: 4

7

Strings are Objects
Python is whatʼs called an object-oriented language (weʼll learn more about what this
means in upcoming lectures)

Most data types are represented as "objects"

An "object" is some data with associated methods (similar to functions) that work on
that data

Python strings are an example of an object

8

Functions vs. Methods
Functions that are associated with an object are called methods

Methods are called on an object using whatʼs called "dot-syntax"

Compare this with the function print, which takes values (including objects) as
arguments:

9

Check Your Understanding
Assume the string variable s is defined. Which of the following are function calls?

len(s)

s.upper()

s.lower()

help(str)

print(s)

input(s)

"hello {}".format(s)

10

Check Your Understanding
Assume the string variable s is defined. Which of the following are function calls?

len(s)

s.upper() # method

s.lower() # method

help(str)

print(s)

input(s)

"hello {}".format(s) # method

11

Comments (from Week 1)
Comments are lines in the source code that are notes to the reader(s), while Python just
ignores them

Comments start with # and continue to the end of the line

U.S. dollars per hour

salary = 18.5 # everything after the comment symbol is ignored

We'll learn other ways to document your code properly next week today!

12

Docstrings
Comments are commonly used to describe what a function does:

However, Pythonʼs help() function canʼt use them unless we wrote them in a special
way (docstrings!)

13

Aside: Loading Functions in the >>> Interpreter

Remember that running python3
to open a new interpreter does
not mean that any of your
functions written in a file are
loaded

To load your functions and test
them in the console, you'll need
to import them (we'll learn more
about import shortly):

14

Docstrings
A docstring is a regular Python string that is the first thing in any of:
● A function body
● A module
● A class (later in course)

Just like the comments weʼve seen so far, the docstring doesnʼt do anything when the
program is executed
● But Python stores it as part of the function/module/class

See CS 1 Code Quality Guide for more notes/expectations on docstring format/contents.

15

https://docs.google.com/document/d/1iHv4rGl2T5zBtPb-3AcqfhxN0p4gnV-NNyqW2fd7Ilw/edit?usp=sharing

Upgrading to Docstrings

16

Modules (Reading 6)
A chunk of code that:
● Exists in its own file
● Is intended to be used by Python code outside itself using "imports"
● Functions in imported modules become available to code that imports them

Often called “libraries” with the analogy that you can “check-out” functions/values that
you need in your programs

17

https://eipsum.github.io/cs1/readings/reading6.html

What’s in a Module?
Can contain any Python code

Most often, modules contain:
● Functions (e.g. math.sqrt())
● Values (constants, e.g. math.pi)
● Classes (we donʼt know what these are yet, but we will soon!)

For now, weʼll mainly be interested in modules that contain functions

18

Some Useful Modules
math: standard math functions and values

cmath: complex number math

string: string functions and values

random: random numbers

sys: system-specific functions and values

time: time-specific functions and values

os: operating system interface

email: email parsing

HTMLParser: web page processing

A list of some other interesting/fun modules can be found here and a full list is here. 19

https://www.geeksforgeeks.org/10-interesting-modules-in-python-to-play-with/
https://docs.python.org/3/py-modindex.html

Using Modules: import
There are various ways to import modules

Note: The dot-syntax is used on Modules since they are treated as Python objects
(where functions are "methods" belonging to the module)

20

Using Modules: import
(Demo with VSCode debugger; see module_demo.py)

21

More ways to import
Writing math.sqrt can be pretty verbose - is there a shorter way?

Instead, we can do:

More concise, but not always a good thing!

22

Common Pitfalls
1. Using a module without importing it

23

Common Pitfalls
2. Not referencing the module when using an imported function

24

Multiple imports
Can import more than one module at a time

>>> import math, string, time

Now, can use any function in the math, string, or time modules (e.g. math.sqrt,
string.capitalize, time.localtime)

Can also import more than one name from a particular module at a time

>>> from math import sin, cos, tan

Now can use sin, cos, and tan without qualifying them

25

Multiple imports
Can import all names from a module

The * means "every name in the module"

Now can use any function in the module without qualifying the name

This isnʼt always a good thing, and you can read more about why in Reading 6

26

import as

A convenient variation of the import statement

The as m means you can qualify the name with just the prefix m (or whatever name you
choose) instead of the full module name (e.g. math).

27

Module Docstrings
We can also have docstrings for an entire module:

28

Module Docstrings

29

Why use docstrings?
We expect you to use docstrings for all your functions and modules

Docstrings are good documentation for:
● You now
● You in the future
● Anyone else that wants to use your modules/functions

Python can also easily turn docstrings into web pages for easy browsing

30

Docstrings for Functions vs. Modules
For functions, a docstring should describe:

1. What the function does
2. What the function arguments represent
3. What the function return value represents

For modules, a docstring should describe:

1. The purpose of the module
2. General description of the kinds of functions in the module (but not a detailed

description of each function)
3. Any other relevant information

31

Module docstrings
We can also have docstrings for an entire module:

32

Module docstrings

33

The __main__ module
Suppose we define a function with a docstring in the Python shell and try to get its
documentation:

34

The __main__ module
__main__ is the name Python gives to either:

● The interactive interpreter (as in the previous slide)
● The module which was directly invoked by Python

All other modules are referred to by their own names (e.g. the greetings module)

You can get the current module with:

print(__name__)

Try it out in 1) the interpreter, 2) within a .py program that is ran with python
filename.py, and 3) within a .py program that is imported with import filename

35

__builtins__

Python contains quite a few built-in functions weʼve already seen
● abs, max, min, etc.

These functions live in a special module called __builtins__

To get documentation on all of them:

>>> help(__builtins__)

36

A New Sequence: List
Recall that a string is a sequence of characters

my_str = "abcde"

A list is a sequence of any kind of value

my_lst = ["a", "b", "c", 1, 2, 3]

… even emojis!

37

Code Demo
Thereʼs quite a lot we can do with lists, so letʼs jump into some code to explore…

See .py files under todayʼs lecture for the code and some practice exercises!

● lec05_lists.py (list demo code)
● extra_list_practice.py (3 practice exercises)
● duck_loop.py (complete duck loop program with emoji module, previewing

loops for Monday)

We have also provided a Lec05Lists.java analog to lec05_lists.py (you
aren't expected to know the Java code, but students have shared it's been helpful to
compare the two languages!)

38

