
CS 1: Intro to CS
More on Strings and Variables/Scoping

Mon. April 8th, 2024

Reminder that HW1 is due Thursday 11:30PM on CodePost

Come to Office Hours! Even just to say hello to TAs this week :)

Tomorrow: Lab 01

● Pitfalls and debugging activity
● Lecture 3 slides include walkthrough of using the VSCode debugger El demo'd on

Friday (you'll get more practice using this in lab)

Announcements

2

Deeper into strings
● Common string methods
● Indexing
● More on formatting

Get more practice with functions/scoping (live-coding exercises continuing off of
Lecture 3's lec03.py function)

Documenting our code with docstrings: How and why

A bit of PEP8 style guidelines along the way (official guide here)

Today's Learning Objectives

3

https://docs.google.com/document/d/1iHv4rGl2T5zBtPb-3AcqfhxN0p4gnV-NNyqW2fd7Ilw/edit?usp=sharing
https://peps.python.org/pep-0008/

Check Your Understanding
Suppose we're trying to produce the following output:

Meet the 3 stooges!

Curly and Larry and Moe

What is wrong with the following code which attempts to produce this?

4

1 cat1 = Curly
2 cat2 = Larry
3 cat3 = Moe
4
5 print('Meet the 3 stooges!')
6 print(cat1 and cat2 and cat3)

VSCode Hints
VSCode will provide "hints" when you have a .py file open

These are very useful as you're learning programming and the rules of Python

Moving your cursor over the first yellow-underline gives a message that Curly is being
referenced in the RHS of an assignment (expecting an expression) but there is no
variable called Curly; don't forget to distinguish between variables (no quotes) and
strings (quoted) in Python!

5

VSCode Hints
A caveat: not all hints will be useful, and not all bugs will be found for you in VSCode

In the example below, we've fixed the first lines, but there's still a bug!

6… ???

More on Format Strings
Sometimes, we want to format numbers in a specific way. Here, :d formats integers, :f
formats floats, and :.2f formats a float with exactly 2 digits following the decimal.

'an integer: {:d}'.format(42)

>>> 'an integer: 42'

'a float: {:f}'.format(42.123400)

>>> 'a float: 42.123400'

'a float: {:.2f}'.format(42.123400)

>>> 'a float: 42.12'

>>> 'If your hourly salary is ${:.2f}, you earn ${:.2f} for working 25 hours a

week.'.format(salary, weekly_salary)

'If your hourly salary is $18.50, you earn $462.50 for working 25 hours a week.'
7

More on Format Strings (Version 3, Preferred)
Using .format() in format strings can be tedious

'x = {}, b = {}'.format(a, b)'

There is conveniently a shortcut:

f'a {a}, b = {b}'

The f'...' syntax indicates that it's a format string, and allows you to use variables in
the format string without the .format() method call

You can also add modifiers (e.g. {a:.2f}) to substitute the numeric value of a to 2
decimal points

8

String Indexing
Can access parts of string sequences in various ways

Python uses “0-based” indexing, meaning the first character is at index 0, not 1

Weʼll learn more about string-processing next week 9

A function takes some input data and transforms it into output data

Functions must be defined and then called with the appropriate arguments

A few functions are built-in to Python so we don't have to define them ourselves:

● print(x)

● input(x)

● type(x)

● int(x), float(x), str(x)

● min(x, y, ...), max(x, y, ...)

● help(), help(fn)

● ...

Recall: Functions

10

Anatomy of a Function
A function is like a machine to perform tasks and possibly return some result

Every function has:

● Behavior (body)
● Parameters (optional)
● Return value (optional)

Function Behavior

Input
(parameters)

Output
 (return value)

min(x, y)
x

42

y

42

48

Example with built-in min function:

11

Defining and Calling Functions

Definition Syntax:
def name(<parameters>):

 <body>

return <value> # optional

Definition Examples:
def say_hello(name):

print('Hello ' + name + '!')

def f(x, y):

return x + 2 * y

Function Call Examples:
say_hello('world') # Hello world!

say_hello('Caltech') # Hello Caltech!

ans = f(2, 20) # ans == 42

Functions may have parameters passed to help generalize functionality and may also
specify a return value with the return keyword (None if no return specified)

12

From Friday
Review: In practice, functions more
commonly return a computed value
instead of print it

Why?

What do we need to change here?
How could we factor the printing
outside of the function definition?

13

bales_per_month
flakes

None

horses

1

2

From Friday
Review: In practice, functions more
commonly return a computed value
instead of print it

Why?

What do we need to change here?
How could we factor the printing
outside of the function definition?

14

1 # Defining the function
2 def f(x, y):
3 return x + 2 * y
4
5 # Calling the function
6 ans = f(2, 20)

1 # Defining the function
2 def say_hello(name):
3 print('Hello', name, '!')
4
5 # Calling the function
6 say_hello('Caltech')

Functions as Machines

x + 2 * y

x

42

y

2

20

print(...)name'Caltech' None

Output: 'Hello Caltech!'

15

Scope is Important!
So far, our variables have been defined top-down - later assignments will shadow
earlier ones.

Functions introduce their own local scope - variables inside functions only exist in
during the lifetime of a function call.

(Code demo with lec04_starter.zip)

16

https://eipsum.github.io/cs1/lectures/lec04/lec04_starter.zip

Local Variables
1 def f(x, y):

2 z = 2 * y # z is a local variable

3 return z + x

4

5 ans1 = f(2, 20) # 42

6 ans2 = f(x, 20) # error! x is not in scope here

17

Parameters vs. Arguments
Formal parameters are simply names for the argument values passed in a function call.
The position of arguments will determine what formal parameter name they are
assigned.

They have no relationship to other variable names in the program and will override
other variables if there is a naming conflict.

1 def f(x, y):

2 z = 2 * y # here, z is a local variable!

3 return z + x

4

5 a = 2

6 b = 20

7 ans1 = f(a, b)

8 ans2 = f(b, a) # b and a are mapped to x and y in f, respectively
18

Practice: Variables and Scoping
What is the result of executing the following program?

1 x = 1
2 y = 2
3 z = 3
4
5 def square(x):
6 return x * x
7
8 def mystery(x, y, z):
9 print('x: ', x, 'y: ', y, 'z: ', z)
10
11 mystery(x, y, z)
12 mystery(x + y, x, square(y))

19

Practice: Variables and Scoping
What is the result of executing the following program?

1 x = 1
2 y = 2
3 z = 3
4
5 def square(x):
6 return x * x
7
8 def mystery(x, y, z):
9 print('x: ', x, 'y: ', y, 'z: ', z)
10
11 mystery(x, y, z)
12 mystery(x + y, x, square(y))

Output:
x: 1 y: 2 z: 3
x: 3 y: 1 z: 4

20

Practice: String Functions
Problem: Suppose Caltech usernames were automatically generated in the format of
first initial followed by full last name (making an unrealistic assumption that everyone
has a single first and last name and there are no duplicates). For example, “Lorem
Hovik” would generate “lhovik@caltech.edu).

Write a function called generate_username that helps generate usernames for new
Caltech students. Then, add a generate_email function that uses this function to
generate a caltech email address (similar to Lab01's warmup) given a first name and last
name.

username_to_email('Lhovik') # returns 'lhovik@caltech.edu'
generate_username('Lorem', 'Hovik') # returns 'lhovik'
generate_email('Lorem', 'Hovik') # returns 'lhovik@caltech.edu' 21

mailto:lhovik@caltech.edu

Comments (from Week 1)
Comments are lines in the source code that are notes to the reader(s), while Python just
ignores them

Comments start with # and continue to the end of the line

U.S. dollars per hour

salary = 18.5 # everything after the comment symbol is ignored

We'll learn other ways to document your code properly next week today!

22

Docstrings
Comments are commonly used to describe what a function does:

However, Pythonʼs help() function canʼt use them unless we wrote them in a special
way (docstrings!)

23

Aside: Loading Functions in the >>> Interpreter

Remember that running python3
to open a new interpreter does
not mean that any of your
functions written in a file are
loaded

To load your functions and test
them in the console, you'll need
to import them (we'll learn more
about import shortly):

24

Docstrings
A docstring is a regular Python string that is the first thing in any of:
● A function body
● A module
● A class (later in course)

Just like the comments weʼve seen so far, the docstring doesnʼt do anything when the
program is executed
● But Python stores it as part of the function/module/class

See CS 1 Code Quality Guide for more notes/expectations on docstring format/contents.

25

https://docs.google.com/document/d/1iHv4rGl2T5zBtPb-3AcqfhxN0p4gnV-NNyqW2fd7Ilw/edit?usp=sharing

Upgrading to Docstrings

26

Strings are Objects
Python is whatʼs called an object-oriented language (weʼll learn more about what this
means in upcoming lectures)

Most data types are represented as "objects"

An "object" is some data with associated methods (similar to functions) that work on
that data

Python strings are an example of an object

27

Functions vs. Methods
Functions that are associated with an object are called methods

Methods are called on an object using whatʼs called "dot-syntax"

Compare this with the function print, which takes values (including objects) as
arguments:

28

Check Your Understanding
Assume the string variable s is defined. Which of the following are function calls?

len(s)

s.upper()

s.lower()

help(str)

print(s)

input(s)

"hello {}".format(s)

29

Check Your Understanding
Assume the string variable s is defined. Which of the following are function calls?

len(s)

s.upper() # method

s.lower() # method

help(str)

print(s)

input(s)

"hello {}".format(s) # method

30

Practice: String Functions
Problem: Suppose Caltech usernames were automatically generated in the format of
first initial followed by full last name (making an unrealistic assumption that everyone
has a single first and last name and there are no duplicates). For example, “Lorem
Hovik” would generate “lhovik@caltech.edu).

Write a function called generate_username that helps generate usernames for new
Caltech students. Then, add a generate_email function that uses this function to
generate a caltech email address (similar to Lab01's warmup) given a first name and last
name.

username_to_email('Lhovik') # returns 'lhovik@caltech.edu'
generate_username('Lorem', 'Hovik') # returns 'lhovik'
generate_email('Lorem', 'Hovik') # returns 'lhovik@caltech.edu' 31

mailto:lhovik@caltech.edu

More Practice (On Your Own)
The last exercise in HW1 is to write a function called gc_content which returns the
percentage (between 0 and 1) of characters in a given string that are "G" or "C"

Try practicing a related function called vowel_count which:
● Takes a string as a single argument
● Returns the number of vowels ("a", "e", "i", "o", or "u") in that string
● What if we want to make it case-insensitive (i.e. "A" is treated as "a")?

32

Upcoming Attractions
Writing our own modules

Lists: Our first data structure!
● Creating lists
● 0-based indexing
● Functions with lists

Loops:
● Processing elements in a sequence (a string or list)
● Repeating code for some number of times with range

33

