
CS 1: Intro to CS
Wrapping up strings, introducing scope and user-defined
functions

What's a ghost's favorite data
type?

A "Boo"-lean!

Announcements
HW1 is due next Friday 11:30PM on CodePost (refer to Syllabus for submission/rework
policies)

2

Python So Far
Writing and running Python programs

Our first print("Hello world!")

Expressions and arithmetic

Different Python types (ints, floats, strings, booleans)

Variables and assignment

Identifying functions "in the real world"

Built-in (print, int, str, min, max, etc.)

3

L2 Exit Ticket Questions Were Great!
I will use some of the student questions this term (keep 'em coming!) and will also
sprinkle in answers to questions students asked me in lectures/Discord.

Today's review questions:
1. What are 4 types in Python you learned from lecture and this week's readings?
2. What is the correct variable type for the question "what is the chance of it being

cloudy today?"

4

https://weatherspark.com/y/1718/Average-Weather-in-Pasadena-California-United-States-Year-Round#Sections-Clouds
https://weatherspark.com/y/1718/Average-Weather-in-Pasadena-California-United-States-Year-Round#Sections-Clouds

I learned how to add numbers and assign the result to a variable in Python.

I learned what why the += operator works the way it does.

The tree visualization was helpful!

I learned what an interpreter is

I learned about how to do the expressions and also got to familiarize myself with a bunch of new
syntax!

I got more comfortable with the terminal and the difference between being in bash ($ or % prompt)
where we can use ls (list), cd (change directory), and python3 (start Python interpreter, or execute a
Python file in the current directory) vs. being in the >>> (wakka) Python interpreter

L2: What is One Thing You Learned?

5

A Few L2 Questions for El

How should the homework template look like?

How many libraries does Python have?

If we have x = y, does this mean that x and y are interchangeable? For instance, if x = 5, would y = 5?

What is the purpose of having a bunch of different programming languages instead of just one big
one? How are these decisions made?

How do you go back to editing source code after using the terminal?

What is the syntax for writing our own functions?
● We will learn this today!

6

http://eipsum.github.io/cs1/hw/hw1.html

L2: What is One Thing You Learned?
I learned that in a case such "x = 45, y = 45, z = x + y," it will evaluate z = x + y from the right-hand side, replacing x + y with 90. Thus, z is
now stored as 90, which means that it will not update to a new value if x and/or y are changed later on.

7

Check Your Understanding: Lecture Check 1
Q2: Remember that if a variable is assigned to another, when the second updates the
first does not

8

Learn more about data types (including booleans) and functions

Use the input(...) function to prompt user input and save as variables

Learn how to write your own reusable functions in Python

Start to better distinguish between functions and methods with a preview of
object-oriented programming

Learn how to use the VSCode debugger to debug your programs and observe program
execution/variable scope

Today's Learning Objectives

9

Review: Types
Data in programming languages is subdivided into different "types":

● integers: 0 -43 1001
● floating-point numbers: 3.1415 2.718
● boolean values: True False
● strings: 'foobar' 'hello, world!'
● and many others

Today, we'll go deeper into strings and how to use them

10

Strings
A sequence of characters

Enclosed in quotes ("" or '')

One of the most-used data types in programs, for example:

● DNA sequences: 'ACCTGGAACT'
● Documents in word processors
● Web pages and text from social media posts
● User interaction (string input/output)
● etc.

11

Sequence...
In Python, strings are just one example of sequences

Other kinds of sequences exist, which we'll cover later (e.g. lists, tuples)

Significance:

● The same functions and operators can be used with different sequences for the
same kind of purpose
○ E.g., len(seq) returns the length of any sequence input

12

… of characters
In Python, there is no special data type for single characters (letters, digits, etc.)

● This is unlike some other programming languages such as Java

A character can only be represented as a string of length 1:

'a' # the character a (letter)

'1' # the character 1 (digit)

'_' # the underscore character

' ' # a space character

13

Quotation Marks
Like many other programming languages, Python allows you to use either single quotes
('') or double quotes ("") to represent strings.

'I am a string'

"So am I!"

However, you must be consistent:

"I am not a valid string'

14

It will happen...
If you leave out the quotation marks on a string, you'll get an error:

>>> 'foobar'

'Foobar'

>>> foobar

NameError: name 'foobar' is not defined

Python interprets foobar as a variable, not a string

15

Python supports + for both ints (addition) and strings (concatenation), but you cannot
mix operand types

We need to be careful when concatenating strings with other types such as numbers

String Concatenation

16

String Concatenation
We can use str() to convert non-string types to strings for concatenation

We could also use the format method here to make things easier (coming up)

17

String Multiplication
We can also multiply strings with * to repeat them

18

Check Your Understanding
Suppose we're trying to produce the following output:

Meet the 3 stooges!

Curly and Larry and Moe

What is wrong with the following code which attempts to produce this?

19

1 cat1 = Curly
2 cat2 = Larry
3 cat3 = Moe
4
5 print('Meet the 3 stooges!')
6 print(cat1 and cat2 and cat3)

VSCode Hints
VSCode will provide "hints" when you have a .py file open

These are very useful as you're learning programming and the rules of Python

Moving your cursor over the first yellow-underline gives a message that Curly is being
referenced in the RHS of an assignment (expecting an expression) but there is no
variable called Curly; don't forget to distinguish between variables (no quotes) and
strings (quoted) in Python!

20

VSCode Hints
A caveat: not all hints will be useful, and not all bugs will be found for you in VSCode

In the example below, we've fixed the first lines, but there's still a bug!

21… ???

String Formatting (Reading 4)
Using comma-separated values with print is tedious and error-prone

Better approach is to use formatting with the string's built-in format method

Aside: Functions vs. Methods:

● We'll learn more about methods when we cover object-oriented programming, but
the key difference is that methods work on objects whereas functions do not

22

https://eipsum.github.io/cs1/readings/reading4.html#_string_formatting

The format method

23

The format method
You can use the format method (using . "dot" syntax) on a string:

● Use {} for placeholders in the string (one for each argument)

● Each argument in the format method call will replace the placeholder (in order)

>>> '{} is the instructor for {}!'.format('El', 'CS1')

'El is the instructor for CS1!'

>>> salary = 18.5

>>> weekly_salary = salary * 20

>>> 'If your hourly salary is ${}, you earn ${} for working 20 hours a

week.'.format(salary, weekly_salary)

'If your hourly salary is $30, you earn $370 for working 20 hours a week.'

24

More on Format Strings
Sometimes, we want to format numbers in a specific way. Here, :d formats integers, :f
formats floats, and :.2f formats a float with exactly 2 digits following the decimal.

'an integer: {:d}'.format(42)

>>> 'an integer: 42'

'a float: {:f}'.format(42.123400)

>>> 'a float: 42.123400'

'a float: {:.2f}'.format(42.123400)

>>> 'a float: 42.12'

>>> 'If your hourly salary is ${:.2f}, you earn ${:.2f} for working 25 hours a

week.'.format(salary, weekly_salary)

'If your hourly salary is $18.50, you earn $462.50 for working 25 hours a week.'
25

More on Format Strings
Using .format() in format strings can be tedious…

'x = {}, b = {}'.format(a, b)'

There is conveniently a shortcut:

f'a {a}, b = {b}'

The f'...' syntax indicates that it's a format string, and allows you to use variables in
the format string without the .format() method call; practice using f'...' in HW 1!

You can also add modifiers (e.g. {a:.2f}) to substitute the numeric value of a to 2
decimal points

26

String Indexing
Can access parts of string sequences in various ways

Python uses “0-based” indexing, meaning the first character is at index 0, not 1

Weʼll learn more about string-processing next week 27

A function takes some input data and transforms it into output data

Functions must be defined and then called with the appropriate arguments

A few functions are built-in to Python so we don't have to define them ourselves:

● print(x)

● input(x)

● type(x)

● int(x), float(x), str(x)

● min(x, y, ...), max(x, y, ...)

● help(), help(fn)

● ...

Recall: Functions

28

The Built-in input Function
Recall that we introduced a few built-in functions last week

One common one is input, which:
● Takes an argument string to print a prompt to the user, pausing the program
● Returns the answer the user types after the prompt as a string

29

More about User Input
Itʼs important to remember that the userʼs input is always returned as a string, even if
the user provides a number

We may need to convert the string to the desired type (e.g. with int(str) for integers
or float(str) for floats)

30

Anatomy of a Function
A function is like a machine to perform tasks and possibly return some result

Every function has:

● Behavior (body)
● Parameters (optional)
● Return value (optional)

Function Behavior

Input
(parameters)

Output
 (return value)

min(x, y)
x

42

y

42

48

Example with built-in min function:

31

Defining and Calling Functions

Definition Syntax:
def name(<parameters>):

 <body>

return <value> # optional

Definition Examples:
def say_hello(name):

print('Hello ' + name + '!')

def f(x, y):

return x + 2 * y

Function Call Examples:
say_hello('world') # Hello world!

say_hello('Caltech') # Hello Caltech!

ans = f(2, 20) # ans == 42

Functions may have parameters passed to help generalize functionality and may also
specify a return value with the return keyword (None if no return specified)

32

1 # Defining the function
2 def f(x, y):
3 return x + 2 * y
4
5 # Calling the function
6 ans = f(2, 20)

1 # Defining the function
2 def say_hello(name):
3 print('Hello', name, '!')
4
5 # Calling the function
6 say_hello('Caltech')

Functions as Machines

x + 2 * y

x

42

y

2

20

print(...)name'Caltech' None

Output: 'Hello Caltech!'

33

Scope is Important!
So far, our variables have been defined top-down - later assignments will shadow
earlier ones.

Functions introduce their own local scope - variables inside functions only exist in
during the lifetime of a function call.

34

Local Variables
1 def f(x, y):

2 z = 2 * y # z is a local variable

3 return z + x

4

5 ans1 = f(2, 20) # 42

6 ans2 = f(x, 20) # error! x is not in scope here

35

Note: ms-python VSCode Extension
In the VSCode setup guide, there is a step to install the ms-python extension:
● “Open the extensions view (Ctrl/Cmd+Shift+X), and install the ms-python.python

extension.”

36

https://marketplace.visualstudio.com/items?itemName=ms-python.python

Starting a Debugging Session
Option 1: Run > Start Debugging

37

Option 2: Click the Debug icon on the left
pan of VSCode and click “Run and
Debug”

Stepping into a Function

38

“Step Into”

Stepping Over to Next Statement

39

“Step Over”

Final Statement After Function return

Note: Line 7 was added to show the scope of ans1 (and absence of x, y, and z) before the
program exits

40

Continued Next Time
More on strings

● String "methods"
● Indexing
● Formatting strings

Deeper into program execution and function scope

(Preview is provided in the following slides)

41

Parameters vs. Arguments
Formal parameters are simply names for the argument values passed in a function call.
The position of arguments will determine what formal parameter name they are
assigned.

They have no relationship to other variable names in the program and will override
other variables if there is a naming conflict.

1 def f(x, y):

2 z = 2 * y # here, z is a local variable!

3 return z + x

4

5 a = 2

6 b = 20

7 ans1 = f(a, b)

8 ans2 = f(b, a) # b and a are mapped to x and y in f, respectively
42

Practice: Variables and Scoping
What is the result of executing the following program?

1 x = 1
2 y = 2
3 z = 3
4
5 def square(x):
6 return x * x
7
8 def mystery(x, y, z):
9 print('x: ', x, 'y: ', y, 'z: ', z)
10
11 mystery(x, y, z)
12 mystery(x + y, x, square(y))

43

Practice: Variables and Scoping
What is the result of executing the following program?

1 x = 1
2 y = 2
3 z = 3
4
5 def square(x):
6 return x * x
7
8 def mystery(x, y, z):
9 print('x: ', x, 'y: ', y, 'z: ', z)
10
11 mystery(x, y, z)
12 mystery(x + y, x, square(y))

Output:
x: 1 y: 2 z: 3
x: 3 y: 1 z: 4

44

Practice: String Functions
Suppose Caltech usernames were automatically generated in the format of first initial
followed by full last name (making an unrealistic assumption that everyone has a single
first and last name and there are no duplicates). For example, “Lorem Hovik” would
generate “lhovik@caltech.edu).

Write a Python function which takes a Caltech username as an argument and returns a
valid email address in the format of <username>@caltech.edu.

Hint: You can lowercase a string with the str.lower() method (e.g. 'ABC'.lower()).

45

Strings are Objects
Python is whatʼs called an object-oriented language (weʼll learn more about what this
means in upcoming lectures)

Most data types are represented as "objects"

An "object" is some data with associated methods (similar to functions) that work on
that data

Python strings are an example of an object

46

Functions vs. Methods
Functions that are associated with an object are called methods

Methods are called on an object using whatʼs called "dot-syntax"

Compare this with the function print, which takes values (including objects) as
arguments:

47

Check Your Understanding
Assume the string variable s is defined. Which of the following are function calls?

len(s)

s.upper()

s.lower()

help(str)

print(s)

input(s)

"hello {}".format(s)

48

Check Your Understanding
Assume the string variable s is defined. Which of the following are function calls?

len(s)

s.upper() # method

s.lower() # method

help(str)

print(s)

input(s)

"hello {}".format(s) # method

49

Function and String Practice
The last exercise in HW1 is to write a function called GC_content which returns the
percentage (between 0 and 1) of characters in a given string that are "G" or "C"

Let's practice a related function called vowel_count which:

● Takes a string as a single argument
● Returns the number of vowels ("a", "e", "i", "o", or "u") in that string
● What if we want to make it case-insensitive (i.e. "A" is treated as "a")?

50

More Practice (On Your Own)
Lecture Check Q5: (per syllabus, these are optional exercises to practice important
concepts)

51

https://caltech.instructure.com/courses/5984/quizzes/6689

Next Time

52

Modules

Documentation with docstrings
● How and why can we properly document our own programs and functions?

Our first data structure: lists!
● A sequence similar to strings

