
CS 1: Intro to CS
Python Functions and Strings

April 3rd, 2024

Today's Agenda
Identifying functions and data types in the real-world
● The function-as-machine model

○ Arguments (0 or more) and their data types (int, str, list, boolean, etc.)
○ Behavior (e.g. computing a total price from given cost and tax rate)
○ Output vs. return (e.g. printing a message, returning total price as a float)

● Pseudocode
○ Step-by-step instructions for the function's implementation after identifying arguments/return and

before implementing code

● Intro to documentation
○ # for inline "source-code" comments
○ """...""" for function documentation (docstrings)

Collectively, an immersive introduction to what we'll be continuing to learn this term!
2

Mid-Week Study Tips
We'll be doing more live-coding/whiteboard activities today, but these slides are very useful
reference and will be continued Friday (focused on variables, assignment, and scoping)

Post on Discord function/program ideas you come up with today using the format from class!
An example is also posted in #fn-ideas, and be creative!
● For additional practice, try writing basic pseudocode and/or docstrings (either for your

idea, or another student's)

Read the readings posted so far this week, attend lectures!

Try asking at least 1 question on Discord this week, whether it's specific to something El
introduces or on #random; let's start the term off with active engagement :)

Make sure you know the difference between running a Python program vs. the >>> prompt
(next slide) 3

Python So Far
Writing and running Python programs:

1. Running a program with the python3 <filename> command in the terminal
2. Writing and running Python in the Python interpreter (invoked in the terminal with

just python3)

Our first print('Hello world!')

Getting started with the terminal to navigate your directories and run Python files

4

Command Line Recap
$ pwd
● "Print working directory"; outputs the system path for the current directory

$ ls or $ ls /path/to/subdirectory
● "list files/subdirectories" (if given path, lists those in the path location instead of

current directory)

Note: The provided screenshots are from El's VSCode terminal as shown in Lecture 1; do
not include $ in your commands, this is the default for many (but not all) command line
prompts

5

Command Line Recap

6

Command Line Recap
$ cd <subdirpath>
● "Change directory" to subdirectory path (see below)

cd ..
● "Go up one directory" (can compound to "go up and in")

7

Command Line Recap

8

Command Line Recap
$ touch <filename.ext>
● Create a new file called <filename.ext> (e.g. touch lec2.py)

$ mkdir <dirname>
● Create a new directory called <dirname>

● (e.g. mkdir lec-practice)

9

Command Line Recap

10

Note: You can also use the "new file" and "new folder" icons on the left Explorer pane if
you prefer

Command Line Recap

11

Command Line Shortcuts
There are a few shortcuts you can use in the command line, but the ones you'll see El
using often are:

1. <Tab> to autocomplete a file path (e.g. cd le<Tab> -> cd lectures/)
2. The Up arrow to go up to the last command

12

Introduce variables and assignment to keep track of data

Introduce useful built-in Python functions

Learn why, how, and when to "package" code into our own reusable functions

Continued Friday:

Understand variable scoping with functions

Understand how to use strings and common pitfalls

Learn how to use string formatting with the format method

Today's Learning Objectives

13

What is a Program, Really?
Even if you do not have any programming experience, you have all solved problems in
the real-world:

● Math problems
● Chemistry/Biology/Physics problems
● Budgeting
● Planning your schedule for this term
● Applying to Caltech
● Prioritizing your commitments/obligations
● Making arguments/finding compromises with people
● Finding the best deal for a new computer
● Solving puzzles/strategizing in board or video games
● …

Problem-Solving

Input/Variables Outcomes/Results

Fundamentals of Programming
Programming is all about formalizing problem-solving using a language of choice (we
happen to use Python in CS 1)

This week, we'll introduce the fundamentals of programming to solve a variety of
problems:

● Arithmetic and expressions
● Variables and assignments
● Datatypes
● Functions
● Scope
● Program Decomposition

Activity
In Discord #lecture, share your response to the following question:

What is an example real-world problem you could model as a function of input to output?

Some examples:

● Given a temperature in Fahrenheit, convert to Celsius
● Given a unit in feet (ft), convert to meters (m)
● Given a birthday, determine the age in years
● Given a Pokemon type, determine its weakness
● Given a favorite music genre, provide 10 recommended Spotify songs
● …
●

Previous Student Ideas
Given dna output the corresponding proteins (this is an upcoming Mini Project!)

Given cost of food at a restaurant, determine tip

Given food allergies, what items on the menu can you eat

Given a Pokemon type, design a six-membered team such that the maximum "type
coverage" is achieved (aka design a gym leader or elite four team).

Student Ideas
Given a date, return the day of the week.

^ There is a bash command for this!

18

Student Ideas
Given a date, return the day of the week.

You can also do this in Python!

19

Arithmetic and Expressions
Arithmetic expressions contain numbers (operands) combined with symbols
(operators) which compute values given the numbers

Operators: + - * / etc.

Numbers can be integers (no decimal point) or floating-point (with decimals)
● Floating-point is an approximation to real numbers

Operator Precedence
What does 1 + 2 * 3 mean?

It could mean

● 1 + (2 * 3)

● (1 + 2) * 3

Computer languages have precedence rules to determine meaning of ambiguous cases

Operator Precedence
What does 1 + 2 * 3 mean?

It could mean

● 1 + (2 * 3) Correct!
● (1 + 2) * 3

Computer languages have precedence rules to determine meaning of ambiguous cases

Here, * has higher precedence than +, so the first meaning is correct

Operator Precedence
In general, + and - have lower precedence than * and /

 The ** (exponentiation) operator is even higher precedence than * and /

>>> 2 * 3 ** 4

162

Use parentheses to force a different order of evaluation if you need it

>>> (2 * 3) ** 4

1296

Variables and Assignment
Often, we want to give names to quantities

In Python, use the = (assignment) operator to do this:

>>> salary = 18.5

From here on, salary stands for 18.5

>>> salary * 20

370

Variables and Assignment
Names assigned to can be reassigned:

>>> salary = 18.5

>>> salary

18.5

>>> salary = 30

>>> salary

30

Variables and Assignment
Names of variables ("identifiers") can only consist of the letters a-z, A-Z, the digits 0-9,
and the underscore (_)

Identifiers also cannot start with a digit (avoids confusion with numbers)

Identifiers can't contain spaces!

Note: Case of letters is significant

● Foo is a different identifier than foo

a = 10

b1 = 20

this_is_a_name = 30

&*%$2foo? = 40 # not valid!

Variables and Assignment
Can have expressions on the right-hand side of assignment statements:

>>> salary = 18.5

>>> weekly_salary = salary * 20

>>> weekly_salary

370

The expression is terminated by the end of the line

Variables and Assignment
Can use results of previous assignments in subsequent ones:

>>> x = 15

>>> y = x * 5

>>> y

75

>>> z = x + y

>>> z

90

>>> z = z + 10

>>> z

100

Variables and Assignment
Evaluation rule for assignment statements:

1. Evaluate the right-hand side
2. Assign the resulting value to the variable on the left-hand side

 This explains why z = z + 10 works:

● previously, z was 90
● evaluate z + 10 to 100
● assign 100 to z (new value)

 Variables can vary!

Types
Data in programming languages is subdivided into different "types":

● integers: 0 -43 1001
● floating-point numbers: 3.1415 2.718
● boolean values: True False
● strings: 'foobar' 'hello, world!'
● and many others

Types
In Python, the same variable can hold data of different types at different times:

>>> a = 'foobar'

>>> a

'foobar'

>>> a = 3.1415926

>>> a

3.1415926

What might be an issue with this?

Comments
Comments are lines in the source code that are notes to the reader(s), while Python just
ignores them

Comments start with # and continue to the end of the line

U.S. dollars per hour

salary = 18.5 # everything after the comment symbol is ignored

We'll learn other ways to document your code properly next week

32

A function takes some input data and transforms it into output data

Functions must be defined and then called with the appropriate arguments

A few functions are built-in to Python so we don't have to define them ourselves:

● print(x)

● input(x)

● type(x)

● int(x), float(x), str(x)

● min(x, y, ...), max(x, y, ...)

● help(), help(fn)

● ...

Functions

33

Anatomy of a Function
A function is like a machine to perform tasks and possibly return some result

Every function has:

● Behavior (body)
● Parameters (optional)
● Return value (optional)

Function Behavior

Input
(parameters)

Output
 (return value)

min(x, y)
x

42

y

42

48

Example with built-in min function:

34

Defining and Calling Functions

Definition Syntax:
def name(<parameters>):

 <body>

return <value> # optional

Definition Examples:
def say_hello(name):

print('Hello ' + name + '!')

def f(x, y):

return x + 2 * y

Function Call Examples:
say_hello('world') # Hello world!

say_hello('Caltech') # Hello Caltech!

ans = f(2, 20) # ans == 42

Functions may have parameters passed to help generalize functionality and may also
specify a return value with the return keyword (None if no return specified)

35

1 # Defining the function
2 def f(x, y):
3 return x + 2 * y
4
5 # Calling the function
6 ans = f(2, 20)

1 # Defining the function
2 def say_hello(name):
3 print('Hello', name, '!')
4
5 # Calling the function
6 say_hello('Caltech')

Functions as Machines

x + 2 * y

x

42

y

2

20

print(...)name'Caltech' None

Output: 'Hello Caltech!'

36

Scope is Important!
So far, our variables have been defined top-down - later assignments shadow will
shadow earlier ones.

Functions introduce their own local scope - variables inside functions only exist in
during the lifetime of a function call.

1 def f(x, y)

2 return x + 2 * y

3

4 ans1 = f(2, 20) # 42

5 ans2 = f(x, 20) # error! x is not in scope here

Parameters vs. Arguments
Formal parameters are simply names for the argument values passed in a function call.
The position of arguments will determine what formal parameter name they are
assigned.

They have no relationship to other variable names in the program and will override
other variables if there is a naming conflict.

1 def f(x, y)

2 return x + 2 * y

3

4 a = 2

5 b = 20

6 ans1 = f(a, b)

7 ans2 = f(b, a) # b and a are mapped to x and y in f, respectively

Practice
What is the result of executing the following program? (PythonTutor demo)

1 x = 1
2 y = 2
3 z = 3
4
5 def square(x):
6 return x * x
7
8 def mystery(x, y, z):
9 print("x: ", x, "y: ", y, "z: ", z)
10
11 mystery(x, y, z)
12 mystery(x + y, x, square(y))

http://www.pythontutor.com/visualize.html#code=x%20%3D%201%0Ay%20%3D%202%0Az%20%3D%203%0A%0Adef%20square%28x%29%3A%0A%20%20%20%20return%20x%20*%20x%0A%0Adef%20mystery%28x,%20y,%20z%29%3A%0A%20%20%20%20print%28%22x%3A%22,%20x,%20%22y%3A%22,%20y,%20%22z%3A%22,%20z%29%0A%20%20%20%20%0Amystery%28x,%20y,%20z%29%0Amystery%28x%20%2B%20y,%20x,%20square%28y%29%29&cumulative=false&heapPrimitives=nevernest&mode=edit&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

Practice
What is the result of executing the following program? (PythonTutor demo)

1 x = 1
2 y = 2
3 z = 3
4
5 def square(x):
6 return x * x
7
8 def mystery(x, y, z):
9 print("x: ", x, "y: ", y, "z: ", z)
10
11 mystery(x, y, z)
12 mystery(x + y, x, square(y))

Output:
x: 1 y: 2 z: 3
x: 3 y: 1 z: 4

http://www.pythontutor.com/visualize.html#code=x%20%3D%201%0Ay%20%3D%202%0Az%20%3D%203%0A%0Adef%20square%28x%29%3A%0A%20%20%20%20return%20x%20*%20x%0A%0Adef%20mystery%28x,%20y,%20z%29%3A%0A%20%20%20%20print%28%22x%3A%22,%20x,%20%22y%3A%22,%20y,%20%22z%3A%22,%20z%29%0A%20%20%20%20%0Amystery%28x,%20y,%20z%29%0Amystery%28z,%20y,%20x%29%0Amystery%28x%20%2B%20y,%20x,%20square%28y%29%29&cumulative=false&heapPrimitives=nevernest&mode=edit&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

Next Time
Implementing our own functions in Python

Program and function scope

Using the Python debugger to walk through a program execution with function calls

More Strings and String formatting methods

41

Week 1 Action Items
Make sure to double-check your (Caltech) email for a CodePost invite sent yesterday
(check your spam if you don't see it in your inbox)

● If you find it and activate it using the link, but still have issues logging in, try closing
your browser and logging in again via a new browser session

Read the first three readings to review this week's material and preview Friday's lecture
material

HW 1 will be posted by Friday, due next Thursday at 11:30PM via CodePost

42

