
CS 1: Intro to CS
Lecture 1: Intro to CS 1 and Python

Monday, Apr. 1st

Agenda
● Introductions
● Course Overview
● Getting started with Python

○ Writing and executing
○ Types and expressions
○ Variables and assignment

CS 1 Staff
Instructor:
● El Hovik (hovik@caltech.edu) (they/she)
● 3rd year at Caltech, from Seattle, WA
● Switched from Pre-Medicine to CS
● I enjoy bridging theory and application in CS (one of the reasons I love teaching CS1, CS 121

Databases, and CS 132 Web Development!)
● In my free time, I enjoy puzzles, games, podcasts, learning new languages, mentoring, and

spending time with my four-legged friend Lorem
● I have experience in PL and CS Education research, as well as interning as a SWE at Expedia

and a few start-ups in Seattle

Course mascot: Lorem (Ipsum)

7 TAs! (Introductions)

mailto:hovik@caltech.edu

My Teaching Philosophy
● I do not assume you have programming experience coming in (I took my first CS class in

college!)
● Each student comes in with different backgrounds, interests, goals, life experiences
● Grades do not define you
● You are all learning how to be a college student, while also learning how to be an adult (and

so are all of the TAs and faculty at Caltech!)
● Students have a range of learning styles, from visual, passive vs. active, auditory, oral, etc.
● You are all innately good at problem-solving; in CS 1, we will learn how to leverage this

human skill to formalizing problems in a variety of real-world problems ranging from
programming fundamentals, data science, Biology, Chemistry, Math, Art, Economics,
Linguistics, Ethics, Privacy… the list goes on!

● CS 1 is not about learning Python; it's about learning problem-solving and buildings toolset
that will be essential to your success in Caltech academics, research, internships, etc.

● I care more about students demonstrating understanding than meeting deadlines

Course Tools
Canvas: https://caltech.instructure.com/courses/4597

Course website: https://eipsum.github.io/cs1

VSCode: Python coding environment
● You may use bash or a different editor if you prefer, but do not use Jupiter

notebooks or Anaconda

Discord: Zoom Office Hours and quick questions

CodePost: HW submission and feedback

https://caltech.instructure.com/courses/5862
https://eipsum.github.io/cs1
https://code.visualstudio.com/
https://discord.gg/xaBXxRNu
https://codepost.io/

Organization
Lectures: MWF 1-1:55PM

Tuesday Labs (1-hour, required attendance; times will be confirmed after Discord
student poll - please respond with a react by today!)

Weekly HW "Mini Project" Sets (HW1 out this week, due next Thursday 11:30PM)

Final Exam

Lectures and Readings
Each lecture will have one or more readings posted to prepare for the new material
● You can find the first two readings here and here

Lectures will generally be interactive, involve coding and having slides mostly for
reference

Questions are encouraged!

https://eipsum.github.io/cs1/readings/reading1.html
https://eipsum.github.io/cs1/readings/reading2.html

How to Use Lectures
I will be incorporating activities in most lectures; the best ones have been "on-the-fly"
based on student questions, and these are shaped the more I get to know you all

My goal is to make lectures worth your time, focusing on live-coding and discussions of
common pitfalls, HW tips, and trade-offs; feedback/requests are welcome!

Slides and readings are comprehensive, so it is expected that you don't assume all
slides will be covered in lecture; that said, El will always incorporate the key material
in lecture and summarize take-aways

Slides will be posted in advance, but occasionally will shift around (e.g. if we don't get
through the last few due to an activity)

Lecture Checks
Optional exercises designed to support your studying and guide the readings as you
learn new material (published as Canvas Quizzes)

You are encouraged to discuss the questions in OH or Discord, and may collaborate with
other students

We do not expect you to spend more than 30-45 minutes on readings/Lecture Checks,
but the time you do spend will be important to introduce the fundamentals so that
lecture can reinforce what you read and provide motivation, demonstrate code
examples, and discuss practical use-cases during lecture.

Attendance
Lecture attendance is optional...

That said, we are making lectures more interactive and focused on problem-solving
strategies (with details of material covered in readings) that will help you prepare for
assignments and CS beyond the course

You can also earn Rework Tokens with lecture exit tickets (short forms) to apply to
reworking assignments (more details soon)

Lecture recordings will not be available to students unless there are approved
exceptional cases

Each assignment has multiple parts in rubric:
● Correctness
● Documentation
● Code Quality
● ...

Each assignment will be graded out of 30 before being divided by 10 to give a grade
between 0 and 3 (rounded to the nearest integer).

More information will be provided in the syllabus.

Grading Homework

Reworks
● After you receive HW feedback, you can rework the assignment during the 1-week

"rework period" for that assignment to improve your grade (up to 1 point, so 2/3
may be updated to 3/3, but 1/3 can only be updated to 2/3)

● You start with 1 free reworks to use throughout the term
● For every 3 lectures you attend and fill out an exit form for, you can earn an extra

rework
● Max of 2 reworks total per assignment

Collaboration Policy
We take collaboration and academic integrity very seriously, and have a thorough
overview of expectations and rules around collaboration you are expected to be read
and follow here.

In short, you are welcome to collaborate informally with students, but may not look at
each others code and may only write your own code (Tuesday labs are an exception),
as long as you follow the course policies outlined.

We take this no-collaboration policy very seriously for assignments and run
submissions through plagiarism detection tools. Ask if you are unsure!

http://eipsum.github.io/cs1/syllabus/collaboration.html

Teaching Challenges
Any CS1 course is hard to teach because of the enormous variation in the programming
experience of students taking the class
● Probably greater than in any other subject

 As an example, letʼs look at hypothetical CS 1 student profiles...

Hypothetical Students in CS 1
Student #1: “Iʼm interested in learning how to program, but Iʼve never done any
programming of any kind before.”

Student #2: “I did some programming in high school. It was fun, but I didnʼt feel like I
really understood what I was doing. Iʼd like to learn to program the right way.”

Student #3: “Iʼve been programming since I was 5 years old. I wrote my own
programming language when I was 11. When I was 16, I wrote my own operating system
and sold it to Google for $50M. Iʼm at Caltech to give me something to do between
IPOs.”

This Course
This course is ideal for students #1 and #2.

Student #3 should probably take CS 2 (next term)

Introduction to Python

Learning Objectives
● Identify the difference between a code editor and interactive Python shell
● Know how to execute Python code on 1) a .py program file and 2) in the Python

shell
● Learn about different types in Python and how to use them in expressions
● Understand how to store information using variables

What is Python?
● Programming language named after “Monty Pythonʼs Flying Circus”
● Designed by Guido van Rossum starting in 1991
● Most recent version is Python 3.9.7

○ Make sure you have the current version installed! There are non-subtle differences from Python 2.X
○ Version 3.8+ is also fine

● Read all about the history here :)

https://en.wikipedia.org/wiki/History_of_Python

Important Note: Python 2 vs. Python 3
There was a significant change in Python's syntax when Python version 3.0 was
introduced

Almost everyone has made the switch by now, but you will still occasionally see Python
2 code in the wild

The Python interpreter program for Python 3 is called python3 while the one for
Python 2 is called python2

● Depending on the computer, python could refer to either one of them

Always use python3 instead, otherwise programs may not run correctly

Your First Python Program
(in VSCode)

1. Write a program in a text editor
(e.g. VSCode). This is called the
source code.

2. Save the source
code as a file
ending in “.py”
(such as lec1.py)

3. Execute the
program by running
the python3
command in a
terminal

Editor

Terminal
(bash)

Using the Terminal to Run a .py Program

Editor

Python
shell (with
>>>)

Alternative: Invoking the Python Shell

Writing vs. Running Code
The editor is where you write your code

The Python shell is where you can interactively experiment with Python code. This shell
is entered from a terminal

Note: Using VSCode is not the only way to write programs in Python!
● VSCode has a convenient editor with a terminal with a Python shell, and doesnʼt

have the feature overhead of other tools
● You can also use your computerʼs bash terminal if you would like

The Python Shell
The Python “shell” is just an interactive interpreter of Python code It prints a prompt
(>>>) and waits for you to enter Python source code

Then it evaluates your code, prints the result, and prints another prompt, etc.

We will use this a lot in our examples

In Python, you can print output to the terminal using the print function

Traditionally, the first words you learn to write in any new programming language are
“Hello world”

Our First Line of Python

Note: You donʼt need to use print
when using the Python interpreter, as
this interprets any code you enter
immediately and outputs the result to
the console

Replacing Your Calculator with Python

What is a Program, Really?
Even if you do not have any programming experience, you have all solved problems in
the real-world:

● Math problems
● Chemistry/Biology/Physics problems
● Budgeting
● Planning your schedule for this term
● Applying to Caltech
● Prioritizing your commitments/obligations
● Making arguments/finding compromises with people
● Finding the best deal for a new computer
● Solving puzzles/strategizing in board or video games
● …

Problem-Solving

Input/Variables Outcomes/Results

Fundamentals of Programming
Programming is all about formalizing problem-solving using a language of choice (we
happen to use Python in CS 1)

This week, we'll introduce the fundamentals of programming to solve a variety of
problems:

● Arithmetic and expressions
● Variables and assignments
● Datatypes
● Functions
● Scope
● Program Decomposition

Preview: Data Types
Data in programming languages is subdivided into different "types":

● integers: 0 -43 1001
● floating-point numbers: 3.1415 2.718
● boolean values: True False
● strings: 'foobar' 'hello, world!'
● and many others

Knowing this, let's start with identifying "functions in the real world"...

Preview: Anatomy of a Function
A function is like a machine to perform tasks and possibly return some result

Every function has:

● Behavior (body)
● Parameters (optional)
● Return value (optional)

Function Behavior

Input
(parameters)

Output
 (return value)

1 # Defining the function
2 def f(x, y):
3 return x + 2 * y
4
5 # Calling the function
6 ans = f(2, 20)

1 # Defining the function
2 def say_hello(name)
3 print("Hello", name, "!")
4
5 # Calling the function
6 say_hello("Caltech")

Preview: Functions as Machines

x + 2 * y

x

42

y

2

20

print(...)name"Caltech" None

Output: "Hello Caltech!"

Activity
In Discord #lecture, share your response to the following question:

What is an example real-world problem you could model as a function of input to
output?

Some examples:

● Given a temperature in Fahrenheit, convert to Celsius
● Given a unit in feet (ft), convert to meters (m)
● Given a birthday, determine the age in years
● Given a Pokemon type, determine its weakness
● Given a favorite music genre, provide 10 recommended Spotify songs
● …

Coming Attractions
On Wednesday, we will:

● Briefly go over arithmetic, data types, and variables/assignment
● Learn about some useful built-in Python functions
● Introduce “packaging” code into our own reusable functions
● Learn about variable scoping with functions

Action Items
● Make sure you have access to Canvas, Discord, and CodePost
● Indicate your Tuesday Lab availability on Discord
● Read the syllabus and collaboration policies
● Read this weekʼs readings before Wednesday
● Complete the student information survey on Discord
● Enjoy your first week of Spring term!

Preview to Lecture 2

Arithmetic and Expressions
Arithmetic expressions contain numbers (operands) combined with symbols
(operators) which compute values given the numbers

Operators: + - * / etc.

Numbers can be integers (no decimal point) or floating-point (with decimals)
● Floating-point is an approximation to real numbers

Operator Precedence
What does 1 + 2 * 3 mean?

It could mean

● 1 + (2 * 3)

● (1 + 2) * 3

Computer languages have precedence rules to determine meaning of ambiguous cases

Operator Precedence
What does 1 + 2 * 3 mean?

It could mean

● 1 + (2 * 3) Correct!
● (1 + 2) * 3

Computer languages have precedence rules to determine meaning of ambiguous cases

Here, * has higher precedence than +, so the first meaning is correct

Operator Precedence
In general, + and - have lower precedence than * and /

 The ** (exponentiation) operator is even higher precedence than * and /

>>> 2 * 3 ** 4

162

Use parentheses to force a different order of evaluation if you need it

>>> (2 * 3) ** 4

1296

Data Types
Data in programming languages is subdivided into different "types":

● integers: 0 -43 1001
● floating-point numbers: 3.1415 2.718
● boolean values: True False
● strings: 'foobar' 'hello, world!'
● and many others

Preview: Types
In Python, the same variable can hold data of different types at different times:

>>> a = 'foobar'

>>> a

'foobar'

>>> a = 3.1415926

>>> a

3.1415926

What might be an issue with this?

Variables and Assignment
Often, we want to give names to quantities

In Python, use the = (assignment) operator to do this:

>>> salary = 18.5

From here on, salary stands for 18.5

>>> salary * 20

370

Variables and Assignment
Names assigned to can be reassigned:

>>> salary = 18.5

>>> salary

18.5

>>> salary = 30

>>> salary

30

Variables and Assignment
Names of variables ("identifiers") can only consist of the letters a-z, A-Z, the digits 0-9,
and the underscore (_)

Identifiers also cannot start with a digit (avoids confusion with numbers)

Identifiers can't contain spaces!

Note: Case of letters is significant

● Foo is a different identifier than foo

a = 10

b1 = 20

this_is_a_name = 30

&*%$2foo? = 40 # not valid!

Variables and Assignment
Can have expressions on the right-hand side of assignment statements:

>>> salary = 18.5

>>> weekly_salary = salary * 20

>>> weekly_salary

370

The expression is terminated by the end of the line

Variables and Assignment
Can use results of previous assignments in subsequent ones:

>>> x = 15

>>> y = x * 5

>>> y

75

>>> z = x + y

>>> z

90

>>> z = z + 10

>>> z

100

Variables and Assignment
Evaluation rule for assignment statements:

1. Evaluate the right-hand side
2. Assign the resulting value to the variable on the left-hand side

 This explains why z = z + 10 works:

● previously, z was 90
● evaluate z + 10 to 100
● assign 100 to z (new value)

 Variables can vary!

Types
Data in programming languages is subdivided into different "types":

● integers: 0 -43 1001
● floating-point numbers: 3.1415 2.718
● boolean values: True False
● strings: 'foobar' 'hello, world!'
● and many others

Types
In Python, the same variable can hold data of different types at different times:

>>> a = 'foobar'

>>> a

'foobar'

>>> a = 3.1415926

>>> a

3.1415926

What might be an issue with this?

A function takes some input data and transforms it into output data

Functions must be defined and then called with the appropriate arguments

A few functions are built-in to Python so we donʼt have to define them ourselves

● print(x)

● input(x)

● type(x)

● int(x), float(x), str(x)

● help()

Functions

Anatomy of a Function
A function is like a machine to perform tasks and possibly return some result

Every function has:

● Behavior (body)
● Parameters (optional)
● Return value (optional)

Function Behavior

Input
(parameters)

Output
 (return value)

Defining and Calling Functions

Definition Syntax:
def name(<parameters>):

 <body>

return <value> # optional

Definition Examples:
def say_hello(name):

print("Hello", name, "!")

def f(x, y)

return x + 2 * y

Function Call Examples:
say_hello("world") # Hello world!

say_hello("Caltech") # Hello Caltech!

ans = f(2, 20) # ans == 42

Functions may have parameters passed to help generalize functionality and may also
specify a return value with the return keyword (None if no return specified)

1 # Defining the function
2 def f(x, y):
3 return x + 2 * y
4
5 # Calling the function
6 ans = f(2, 20)

1 # Defining the function
2 def say_hello(name)
3 print("Hello", name, "!")
4
5 # Calling the function
6 say_hello("Caltech")

Functions as Machines

x + 2 * y

x

42

y

2

20

print(...)name"Caltech" None

Output: "Hello Caltech!"

Scope is Important!
So far, our variables have been defined top-down - later assignments shadow will
shadow earlier ones.

Functions introduce their own local scope - variables inside functions only exist in
during the lifetime of a function call.

1 def f(x, y)

2 return x + 2 * y

3

4 ans1 = f(2, 20) # 42

5 ans2 = f(x, 20) # error! x is not in scope here

Parameters vs. Arguments
Formal parameters are simply names for the argument values passed in a function call.
The position of arguments will determine what formal parameter name they are
assigned.

They have no relationship to other variable names in the program and will override
other variables if there is a naming conflict.

1 def f(x, y)

2 return x + 2 * y

3

4 a = 2

5 b = 20

6 ans1 = f(a, b)

7 ans2 = f(b, a) # b and a are mapped to x and y in f, respectively

Practice
What is the result of executing the following program? (PythonTutor demo)

1 x = 1
2 y = 2
3 z = 3
4
5 def square(x):
6 return x * x
7
8 def mystery(x, y, z):
9 print("x: ", x, "y: ", y, "z: ", z)
10
11 mystery(x, y, z)
12 mystery(x + y, x, square(y))

http://www.pythontutor.com/visualize.html#code=x%20%3D%201%0Ay%20%3D%202%0Az%20%3D%203%0A%0Adef%20square%28x%29%3A%0A%20%20%20%20return%20x%20*%20x%0A%0Adef%20mystery%28x,%20y,%20z%29%3A%0A%20%20%20%20print%28%22x%3A%22,%20x,%20%22y%3A%22,%20y,%20%22z%3A%22,%20z%29%0A%20%20%20%20%0Amystery%28x,%20y,%20z%29%0Amystery%28x%20%2B%20y,%20x,%20square%28y%29%29&cumulative=false&heapPrimitives=nevernest&mode=edit&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

Practice
What is the result of executing the following program? (PythonTutor demo)

1 x = 1
2 y = 2
3 z = 3
4
5 def square(x):
6 return x * x
7
8 def mystery(x, y, z):
9 print("x: ", x, "y: ", y, "z: ", z)
10
11 mystery(x, y, z)
12 mystery(x + y, x, square(y))

Output:
x: 1 y: 2 z: 3
x: 3 y: 1 z: 4

http://www.pythontutor.com/visualize.html#code=x%20%3D%201%0Ay%20%3D%202%0Az%20%3D%203%0A%0Adef%20square%28x%29%3A%0A%20%20%20%20return%20x%20*%20x%0A%0Adef%20mystery%28x,%20y,%20z%29%3A%0A%20%20%20%20print%28%22x%3A%22,%20x,%20%22y%3A%22,%20y,%20%22z%3A%22,%20z%29%0A%20%20%20%20%0Amystery%28x,%20y,%20z%29%0Amystery%28z,%20y,%20x%29%0Amystery%28x%20%2B%20y,%20x,%20square%28y%29%29&cumulative=false&heapPrimitives=nevernest&mode=edit&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

